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CSE 341:
Programming Languages

Dan Grossman

Fall 2004

Lecture 18— Tree-Iterator Example and Static vs. Dynamic Typing
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An Extended Example

You’ve seen several advanced and abstract notions:

• iterators for separating traversal from processing

• thunks for delaying evaluations

• passing continuations for “what to do next”

– let/cc “forgets what you’re doing” like exceptions

– but passing a “continuation function” is a similar idiom

• tail recursion

An elegant example that puts it all together: a tree iterator
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Cool things about the tree iterator

Fundamentally, tree iteration requires a conceptual stack.

But using the call-stack is inconvenient because of delayed evaluation.

Instead the stack is implicit in our “continuation functions”.

And everything is a tail call!

Food for thought: There is an automatic transformation that makes

every function call in every program a tail call, eliminating a call-stack

and using “continuation functions” instead. Called

continuation-passing style.
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Good and Bad Things About Types

Strong vs. Weak typing

In languages with weak typing, there exist programs that

implementations must accept at compile-time, but at run-time the

program can do anything, including blow-up your computer.

Examples: C, C++

Old “wisdom”: “Strong types for weak minds”

New “wisdom”: “Weak typing endangers society and costs billions a

year”

Why weak typing? For efficient and low-level implementation

(important for 1% of low-level systems)

My view: Programming is hard enough without

implementation-defined behavior. This has little to do with types.
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Static vs. Dynamic Typing

In ML and Scheme adding strings (‘‘hi’’ + ‘‘mom’’ or (+ ‘‘hi’’

‘‘mom’’)) is an error, but in ML it’s at “compile-time” (static) and

Scheme it’s at “run-time” (dynamic).

Indisputable facts:

• A language with static checks catches certain bugs without testing

(earlier in the software-development cycle)

• It is impossible to catch exactly the buggy programs at

compile-time

– “Will a program add a string” trivially harder than “Will a

program terminate”

– Application-logic bugs remain (e.g., using factorial where you

meant to use fibonacci)
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Static Checking

Key questions for a compile-time check (e.g., type-checking):

1. What is it checking? Examples (and not):

• Primitives (+, apply, ...) are never applied to “inappropriate”

values

• hd is never applied to the empty list

2. Is it sound? (Does it ever accept a program that at run-time does

what we claimed it could not? “false negative”)

3. Is it complete? (Does it ever reject a program that could not do

the “bad thing” at run-time? “false positive”)

All non-trivial static analyses are either unsound or incomplete.

Good design leads to “useful subsets” of all programs, typically (but

not always) ensuring soundness and sacrificing completeness.
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A Question of Eagerness

Again, every static type system provides certain guarantees. Here are

some things for which useful static checks have been developed, but

are not commonly in type systems (yet?): NULL dereferences,

division-by-zero, data races, ...

There is also more than “compile-time” or “run-time”. Consider x /

0.

• Compile-time: reject if code is “reachable” (maybe dead branch)

• Link-time: reject if code is “reachable” (maybe unused function)

• Run-time: reject if code executes (maybe branch never taken)

• Even later: maybe delay error until “bad number” is used to index

into an array or something.

– Crazy? Floating-point allows division-by-zero; gives you nan.
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Exploring Some Arguments

1. Dynamic/static typing is more convenient

(define (f x) (if (> x 0) (* 2 x) #f))

(let ([ans (f y)]) (if ans e1 e2))

datatype intOrBool = Int of int | Bool of bool

fun f x = if x > 0 then Int (2*x) else Bool false

case f y of

Int i => e1

| Bool b => e2

(define (cube x) (if (not (number? x))

(error ’cube ‘‘bad arguments’’)

(* x x x)))

(cube 7)

fun cube x = x * x *x

cube 7
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Exploring Some Arguments

2. Static typing prevents / doesn’t prevent useful programs

• Overly restrictive type systems certainly can (Pascal array sizes,

lack of polymorphism)

• datatype gives you as much or as little flexibility as you want –

can embed Scheme in ML:

datatype SchemeVal = Int of int | String of string

| Fun of SchemeVal -> SchemeVal

| Cons of SchemeVal * SchemeVal

if e1

then Fun (fn x => case x of Int i => i * i * i)

else Cons (Int 7, String ‘‘hi’’)

Viewed this way, Scheme is “unityped” with “implicit

tag-checking” which is “just” a matter of convenience.
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Exploring Some Arguments

3. Static/dynamic typing better for code evolution

• Dynamic: If you need to change the type of something, the

program will still compile; easier to incrementally upgrade other

code to support the change?

• Static: If you change the type of something, the type-checker

guides you to all the places you need to change?

In practice, ML’s pattern exhaustiveness is great for the latter.
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Exploring Some Arguments

4. Types should/shouldn’t be extensible (new cases throughout

program, at run-time, etc.)

• Dynamic: necessary for abstraction, necessary for an evolving

world (ubicomp, service discovery, etc.), even ML does it for

exceptions

• Static: can never establish exhaustiveness, must always have

“default” clauses

My view: You probably want both options in your language and to

think carefully in design phase.
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Exploring Some Arguments

5. Types make code reuse harder/easier.

• Dynamic: Soundness means you’ll never be as flexible as

somebody wants; if you use cons cells for everything, you can have

a rich library for them

• Static: Using separate types catches bugs and enforces

abstractions; we can provide enough flexibility in practice (e.g.,

with polymorphism)

Design issue: Whether to build a new data structure or encode with

existing ones (for libraries) is an important consideration.
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Exploring Some Arguments

6. Types make programs faster/slower.

• Dynamic: Don’t have to code around the type system or duplicate

code; optimizer can remove provably unnecessary tag-tests

• Static: Programmer controls where tag-tests occur (in patterns)
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Summary

There are real trade-offs here; you must know them.

It is possible to have rational discussions about them, informed by

facts.

Almost every language checks some things statically and other things

dynamically.
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