
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 12— Type Inference, Parametric Polymorphism, Type

Constructors

Dan Grossman CSE341 Spring 2004, Lecture 12 1

'

&

$

%

Today

• We have learned an interesting subset of the ML expression

language

• But we have been really informal about some aspects of the type

system:

– Type inference (what types do bindings implicitly have)

– Type variables (what do ’a and ’b really mean)

– Type constructors (why is int list a type but not list)

• Note: Type inference and parametric polymorphism are separate

concepts that end up intertwined in ML. A different language

could have one or the other.

Dan Grossman CSE341 Spring 2004, Lecture 12 2

'

&

$

%

Type Inference

Some languages are untyped or dynamically typed.

ML is statically typed ; every binding has one type, determined during

type-checking (compile-time).

ML is implicitly typed ; ignoring a few things like “dot-dot-dot

patterns” programmers never need to write the types of bindings.

The type-inference question: Given a program without explicit types,

produce types for all bindings such that the program type-checks, or

reject (only) if it is impossible.

Whether type inference is easy, hard, or impossible depends on details

of the type system: Making it more or less powerful (i.e., more

programs typecheck) may make inference easier or harder.

Dan Grossman CSE341 Spring 2004, Lecture 12 3

'

&

$

%

ML Type Inference

• Determine types of bindings in order (earlier first) (except for

mutual recursion)

• For each val or fun binding, analyze the binding to determine

necessary facts about its type.

• Afterward, use type variables (e.g., ’a) for any unconstrained

types in function arguments or results.

• Some extra details for type variables and references we’ll mention

later.

Amazing fact: For the ML type system, “going in order” this way

never causes unnecessary rejection.

Dan Grossman CSE341 Spring 2004, Lecture 12 4

'

&

$

%

Example 1

fun f x =

let val (y,z) = x in

(Math.abs y) + z

end

Dan Grossman CSE341 Spring 2004, Lecture 12 5

'

&

$

%

Example 2

fun sum lst =

case lst of

[] => 0

| hd::tl => hd + (sum tl)

Dan Grossman CSE341 Spring 2004, Lecture 12 6

'

&

$

%

Example 3

fun compose (f,g,x) = f (g x)

Dan Grossman CSE341 Spring 2004, Lecture 12 7

'

&

$

%

Comments on ML type inference

• If we had subtyping, the “equality constraints” we generated

would be unnecessarily restrictive.

• If we did not have type variables, we would not be able to give a

type to compose until we saw how it was used.

– But type variables are useful regardless of inference.

• Inference is why let val x = e1 in e2 end is not really sugar

for (fn x => e2) e1 because the latter gives a type error if e2

contains x 0 and x "foo", even if e1 if fn y => y.

– Don’t worry if that doesn’t make sense.

Dan Grossman CSE341 Spring 2004, Lecture 12 8

'

&

$

%

Parametric polymorphism

Fancy words for “forall-types”. Coming to next version of Java, C#,

VB, etc. Sometimes called generics. A bit like C++ templates if C++

didn’t have operator-overloading.

In principle, just two new kinds of types:

tv ::= ’a | ’b | ...

t ::= int | string | bool | t1->t2 | {l1:t1, ..., ln:tn}

| dtname | tv | forall tv. t

Given an expression of type forall ’tv. t, we can instantiate it at

type t2 to get an expression of type “t with ’tv replaced by t2”

Example: We can instantiate

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a) with string

for ’a and int->int for ’b to get

(string * (int->int)) -> ((int->int) * string)

Dan Grossman CSE341 Spring 2004, Lecture 12 9

'

&

$

%

ML-style polymorphism

The ML type system is actually more restrictive:

• “forall” must appear “all the way on the outside-left”

• So it’s implicit; no way to write the words “for all”

Example: (’a * ’b) -> (’b * ’a) means

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

Non-example: There’s no way to have a type like

(forall ’a. ’a -> int) -> int

Easy to express this restriction syntactically:

tv ::= ’a | ’b | ...

s ::= int | string | bool | t1->t2 | {l1:t1, ..., ln:tn}

| dtname | tv

t ::= s | forall tv. t

Dan Grossman CSE341 Spring 2004, Lecture 12 10

'

&

$

%

Versus Subtyping

Compare

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with

class Pair { Object x; Object y; ... }

Pair swap(Pair pr) { return new Pair(pr.y, pr.x); }

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast result

• Callee cannot return a pair of any two objects.

Dan Grossman CSE341 Spring 2004, Lecture 12 11

'

&

$

%

Containers

Parametric polymorphism (forall types) are also the right thing for

containers (lists, sets, hashtables, etc.) where elements have the same

type.

Example: ML lists

val :: : (’a * (’a list)) -> ’a list (* infix is syntax *)

val map : ((’a -> ’b) * (’a list)) -> ’b list

val sum : int list -> int

val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

list is not a type; if t is a type, then t list is a type.

Dan Grossman CSE341 Spring 2004, Lecture 12 12

'

&

$

%

User-defined type constructors

Language-design: don’t provide a fixed set of a useful thing.

Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype ’a rope = Empty

| Cons of ’a * (’a rope)

| Rope of (’a rope) * (’a rope)

You can have multiple type-parameters (not shown here).

And now, finally, everything about lists is syntactic sugar!

Dan Grossman CSE341 Spring 2004, Lecture 12 13

'

&

$

%

One last thing – not on the test

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (* ’a list ref *)

val _ = x := ["hi"] (* instantiate ’a with string *)

val _ = (hd(!x)) + 7 (* instantiate ’a with int -- bad!! *)

Roughly, ML ensures the t in t ref has no new type variables.

But they do it with a non-obvious way: function applications (such as

ref []) cannot get polymorphic types; user specifies (e.g.,

int list ref)

Dan Grossman CSE341 Spring 2004, Lecture 12 14

