CSE 341:
Programming Languages

Dan Grossman
Spring 2004
Lecture 18— MzScheme Modularity; Types or No Types?

-

Dan Grossman CSE341 Spring 2004, Lecture 18



ﬂl’oday \

“Finish” Scheme and compare to ML

More generally, consider advantages and disadvantages of strong
and/or static typing.

First consider abstraction in (Mz)Scheme.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 2




/I\/Iodularity \

R5RS does not even have define-struct or namespace management.

This makes it difficult (impossible in practice?) to maintain library

Invariants:
e Can use let to hide private things

e Can make private copies to detect changes to values or “forged
values” (but often may as well just re-check invariants)

e But clients can still assume things about the implementation

It should not be this awkward /expensive!
But can we have strong modules without compile-time types?

Yes, with define-struct, name hiding, and run-time checks.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 3




/An Interesting comparison \

In ML, an abstract type prevents abstraction-breaking clients (won't
typecheck)

In MzScheme, a fresh type and hidden predicate prevents
abstraction-breaking clients (unbound variable).

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 4




/Good and Bad Things About Types \

Strong vs. Weak typing

In languages with weak typing, there exist programs that
implementations must accept at compile-time, but at run-time the
program can do anything, including blow-up your computer.

Examples: C, C4++
Old “wisdom”: “Strong types for weak minds”

New “wisdom”: “Weak typing endangers society and costs billions a
year"

Why weak typing? For efficient and low-level implementation
(important for 1% of low-level systems)

My view: Programming is hard enough without

\inplementation—defined behavior. This has little to do with types. /

Dan Grossman CSE341 Spring 2004, Lecture 18 5



/Static vs. Dynamic Typing

~

In ML and Scheme adding strings (¢ ‘hi’’ + ‘‘mom’’ or (+ ¢‘hi’
‘‘mom’’)) is an error, but in ML it's at “compile-time” (static) and
Scheme it's at “run-time” (dynamic).

Indisputable facts:

)

e A language with static checks catches certain bugs without testing

(earlier in the software-development cycle)
e It is impossible to catch exactly the buggy programs at
compile-time

— “WIill a program add a string” trivially harder than “Will a
program terminate”

— Application-logic bugs remain (e.g., using factorial where you

meant to use fibonacci)

-

/

Dan Grossman CSE341 Spring 2004, Lecture 18 6



/Static Checking \

Key questions for a compile-time check (e.g., type-checking):

1. What is it checking? Examples (and not):
e Primitives (4, apply, ...) are never applied to “inappropriate”

values

e hd is never applied to the empty list

2. Is it sound? (Does it ever accept a program that at run-time does
what we claimed it could not? “false negative”)

3. Is it complete? (Does it ever reject a program that could not do
the “bad thing” at run-time? “false positive”)

All non-trivial static analyses are either unsound or incomplete.

Good design leads to “useful subsets” of all programs, typically (but
\\not always) ensuring soundness and sacrificing completeness. /

Dan Grossman CSE341 Spring 2004, Lecture 18 7



/A Question of Eagerness \

Again, every static type system provides certain guarantees. Here are

some things for which useful static checks have been developed, but
are not commonly in type systems (yet?): NULL dereferences,
division-by-zero, data races, ...

There is also more than “compile-time” or “run-time”. Consider x /
0.

e Compile-time: reject if code is “reachable” (maybe dead branch)
e Link-time: reject if code is “reachable” (maybe unused function)
e Run-time: reject if code executes (maybe branch never taken)

e Even later: maybe delay error until “bad number” is used to index
into an array or something.

— Crazy? Floating-point allows division-by-zero; you exploited

\\ this in hw2. /

Dan Grossman CSE341 Spring 2004, Lecture 18 8




/Exploring Some Arguments

1. Dynamic/static typing is more convenient

(define (f x) (if (> x 0) (x 2 x) #f))

(let ([ans (f y)]) (if ans el e2))

datatype intOrBool = Int of int | Bool of bool
fun f x = if x > 0 then Int (2*x) else Bool false

case f y of
Int 1 => el
| Bool b => e2

(define (cube x) (if (not (number? x))
(error ’cube ‘‘bad arguments’’)

(* x x x)))

(cube 7)
fun cube x = x * X *x

K cube 7 /

CSE341 Spring 2004, Lecture 18 9

Dan Grossman



/Exploring Some Arguments \

2. Static typing prevents / doesn't prevent useful programs

e Overly restrictive type systems certainly can (Pascal array sizes,
lack of polymorphism)

e datatype gives you as much or as little flexibility as you want —
can embed Scheme in ML:

datatype SchemeVal = Int of int | String of string
| Fun of SchemeVal -> SchemeVal
| Cons of SchemeVal * SchemeVal

if el

then Fun (fn x => case x of Int i1 => i * i * i)

else Cons (Int 7, String ‘‘hi’’)

Viewed this way, Scheme is “unityped” with “implicit
\\ tag-checking” which is “just” a matter of convenience. /

Dan Grossman CSE341 Spring 2004, Lecture 18 10



/Exploring Some Arguments \

3. Static/dynamic typing better for code evolution

e Dynamic: If you need to change the type of something, the
program will still compile; easier to incrementally upgrade other

code to support the change?

e Static: If you change the type of something, the type-checker
guides you to all the places you need to change?

In practice, ML's pattern exhaustiveness is great for the latter.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 11




/Exploring Some Arguments \

4. Types should/shouldn’t be extensible (new cases throughout

program, at run-time, etc.)

e Dynamic: necessary for abstraction, necessary for an evolving
world (ubicomp, service discovery, etc.), even ML does it for

exceptions

e Static: can never establish exhaustiveness, must always have

“default” clauses

My view: You probably want both options in your language and to

think carefully in design phase.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 12




/Exploring Some Arguments \

5. Types make code reuse harder/easier.

e Dynamic: Soundness means you'll never be as flexible as
somebody wants; if you use cons cells for everything, you can have

a rich library for them

e Static: Using separate types catches bugs and enforces
abstractions; we can provide enough flexibility in practice (e.g.,

with polymorphism)

Design issue: Whether to build a new data structure or encode with

existing ones (for libraries) is an important consideration.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 13




/Exploring Some Arguments \

6. Types make programs faster/slower.

e Dynamic: Don't have to code around the type system or duplicate
code; optimizer can remove provably unnecessary tag-tests

e Static: Programmer controls where tag-tests occur (in patterns)

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 14




/Summary \

There are real trade-offs here; you must know them.

It is possible to have rational discussions about them, informed by

facts.

Almost every language checks some things statically and other things

dynamically.

- /

Dan Grossman CSE341 Spring 2004, Lecture 18 15




