
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 28— Closures in Java; What We Didn’t Do; Wrap-Up

Dan Grossman CSE341 Spring 2004, Lecture 28 1

'

&

$

%

Goals for today

• Show you some functional ideas in Java

• Give a flavor of big areas of PL we didn’t even get to

• Put in context what we did get to

Dan Grossman CSE341 Spring 2004, Lecture 28 2

'

&

$

%

Higher-order functions in Java?

• Anonymous inner classes are a convenience for making

higher-order functions less burdensome.

• There are still final restrictions, which make the implementation

easier but are a slight inconvenience.

• Regardless, OO and downcasts let you manually create closures.

• C# has delegates, which are even closer to first-class functions.

Dan Grossman CSE341 Spring 2004, Lecture 28 3

'

&

$

%

What else?

Are all programming languages imperative, OO, or FP? No.

• Logic languages (e.g., Prolog)

• Scripting languages (Perl, Python, Ruby)

• Query languages (SQL)

• Purely functional languages (no ref or set!)

• Visual languages, spreadsheet languages, GUI-builders,

text-formatters, hardware-synthesis, ...

Dan Grossman CSE341 Spring 2004, Lecture 28 4

'

&

$

%

Prolog in one example

append(cons(Hd,Tl), Lst2, cons(Hd,Tl2)) :=

append(Tl, Lst2, Tl2).

append(nil, Lst2, Lst2).

append(cons(1, cons(2, nil)), cons(3, cons(4, nil)), X)

% X = cons(1,cons(2,cons(3,cons(4,nil))))

append(cons(1, nil), cons(2,nil), cons(1, cons(2, nil)))

% yes

append(nil, cons(2,nil), cons(1, cons(2, nil)))

% no

append(cons(Hd,nil), Y, cons(1, cons(2, cons(3, nil))))

% Hd = cons(1,nil) Y cons(2,cons(3,nil))

Dan Grossman CSE341 Spring 2004, Lecture 28 5

'

&

$

%

Prolog key ideas

• A program is a set of declarative proof rules.

• Operationally, it’s like a function that doesn’t distinguish inputs

from outputs.

• The implementation searches for the minimal constraints

necessary for a formula to be true.

• Different “queries” can run “forward” or “backward”

• This is Turing-complete; killer app is inherently search-oriented

tasks, which are common in AI.

Dan Grossman CSE341 Spring 2004, Lecture 28 6

'

&

$

%

Scripting Languages

Few “new” language constructs, but convenience for some

quick-and-dirty programs.

• File-system access very lightweight

• Lots of support for string-processing via regular expressions (a

different “pattern-matching”)

• Dynamically typed with implicit coercions (such as int to string)

• Tend to have very few “errors” (array resizing, implicit variable

declaration, etc.)

Opinion:

• A fine tool for small tasks

• They tend to hide bugs rather than prevent them

• But you should learn to automate repetitive tasks!

Dan Grossman CSE341 Spring 2004, Lecture 28 7

'

&

$

%

Query Languages

Canonical example: Suppose there’s a big database and many people

need data from it. We could make lots of copies or let people submit

queries.

Key idea: Move the code to the data, not the data to the code.

Interestingly: We do not necessarily want the query language to be as

powerful as a Turing-machine!

SQL was carefully designed so every query terminates.

Dan Grossman CSE341 Spring 2004, Lecture 28 8

'

&

$

%

Purely Functional Languages

Mutation seemed necessary in ML and Scheme for building data

structures with cycles. It’s not:

• You can build equivalent structures without cycles.

• You can build cycles by cleverly applying functions to themselves

• In fact, you can build recursion the same way

(recall ((lambda (x) x x) (lambda (x) x x))).

• In fact, this subset of Scheme is Turing-complete:

e ::= x | (lambda (x) e) | (e1 e2)

This language is “impractical” but it’s an important fact. For example,

SQL can’t include these features.

Dan Grossman CSE341 Spring 2004, Lecture 28 9

'

&

$

%

Real Purely Functional Languages

Example: Haskell

To make life without refs palatable, the default is “lazy” (call-by-need)

evaluation.

One-line example: let ones = 1::ones

Laziness can lead to elegant programming and really increases the

number of equivalent programs. In Haskell, (f x) + (f x) and

(f x) * 2 are contextually equivalent, always.

• Haskell does have monads, which allow a more imperative style.

• The implementation of laziness uses mutation, but in a controlled

way (we did this in Scheme).

Dan Grossman CSE341 Spring 2004, Lecture 28 10

'

&

$

%

Ignored Language Features

• Threads (potential safety problem: race conditions)

• Interoperability (component / software-architecture languages,

foreign-function interfaces, more “open” garbage collectors)

• Aspects (yet another way to change program layout—beyond the

2-D grid)

• eval and reflection: For over 50 years, LISP (and later Scheme)

programs have been able to build arbitrary programs at run-time

and evaluate them.

• ...

Dan Grossman CSE341 Spring 2004, Lecture 28 11

'

&

$

%

But we still did a lot
A thorough understanding of higher-order programming, variable

scope, semantics of FP and OO, important idioms, static typing, ...

Oh, and you learned a healthy amount of 3 new languages.

Hopefully:

• The time you need to “pick up” a language will drop dramatically

(though you have to learn big libraries too)

• You will use mutation for what it’s good for and not to create

brittle programs with lots of unseen dependencies

• Understand syntax matters, but it’s not that interesting

• Apply idioms in languages other than where you learned them

• Recognize language-design is hard and semantics should not be

treated lightly.

Dan Grossman CSE341 Spring 2004, Lecture 28 12

'

&

$

%

Context

In most courses and jobs, a programming language is just a means to

an end (and only one of many means).

This course was perhaps your one chance to study languages as designs

that are themselves fascinating, beautiful, and sometimes awkward

I believe this makes you a better programmer, even if the rest of your

life is spent in Java (which it won’t be)

Dan Grossman CSE341 Spring 2004, Lecture 28 13

