
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 7— Motivation and First-Class Functions

Dan Grossman CSE341 Spring 2004, Lecture 7 1

'

&

$

%

Today

• Finish course motivaton

• Summarize what we’ve learned with a concise and well-known

notation for recursively-defined language constructs

• Begin first-class functions

Dan Grossman CSE341 Spring 2004, Lecture 7 2

'

&

$

%

Why these 3?

Functional programming (ML, Scheme) encourages recursion,

discourages mutation, provides elegant, lightweight support for

first-class code. Support for extensibility complements OO.

• ML has a polymorphic type system (vindication imminent!)

complementary to OO-style subtyping, a rich module system for

abstract types, and rich pattern-matching.

• Scheme has dynamic typing, “good” macros, fascinating control

operators, and a minimalist design.

• Smalltalk has classes but not types, an unconventional

environment, and a complete commitment to OO.

Runners-up: Haskell (laziness and purity), Prolog (unification and

backtracking), thousands of others...

Dan Grossman CSE341 Spring 2004, Lecture 7 3

'

&

$

%

Why not some popular ones?

• Java: you know it, will contrast at end of course (e.g., interfaces,

anonymous inner classes, container types)

• C: lots of “implementation-dependent” behavior (a bad property),

and we have CSE303

• C++: an enormous language, and unsafe like C

• Perl: advantages (strings, files, ...) not foci of this course. Python

or Ruby would be closer.

Dan Grossman CSE341 Spring 2004, Lecture 7 4

'

&

$

%

Summary and Some Notation

Learned the syntax, typing rules, and semantics for (a big) part of ML

Can summarize abstract syntax with (E)BNF. Informally:

t ::= int | bool | unit | dtname

| t1 -> t2 | t1 * t2 | {x1=t1, ..., xn=tn}

e ::= 34 | x | (e1,e2) | if e1 then e2 else e3

| let b1 ... bn in e end | e1 e2

| case e of p1 => e1 | ... | pn => en

| e1 + e2 | {x1=e1, ..., xn=en} | C e

b ::= val p = e | fun f p = e

| datatype dtname = C1 of t1 | ... | Cn of tn

p ::= 34 | x | _ | C p | (p1,p2) | {x1=p1, ..., xn=pn}

Things left out of this grammar : n-tuples, field-accessors,

floating-point, boolean constants, andalso/orelse, lists, ...

Dan Grossman CSE341 Spring 2004, Lecture 7 5

'

&

$

%

First-Class Functions

• Functions are values. (Variables in the environment are bound to

them.)

• We can pass functions to other functions.

– Factor common parts and abstract different parts.

• Most polymorphic functions take functions as arguments.

– Non-example: fun f x = 42

• Some functions taking functions are polymorphic.

Dan Grossman CSE341 Spring 2004, Lecture 7 6

'

&

$

%

Type Inference and Polymorphism

ML can infer function types based on function bodies. Possibilities:

• The argument/result must be one specific type.

• The argument/result can be any type, but may have to be the

same type as other parts of argument/result.

• Some hand-waving about “equality types”

We will study this parametric polymorphism more next week.

Without it, ML would be a pain (e.g., a different list library for every

list-element type).

Fascinating: If f:int->int, there are lots of values f could return. If

f:’a->’a, whenever f returns, it returns its argument!

Dan Grossman CSE341 Spring 2004, Lecture 7 7

'

&

$

%

Anonymous Functions

As usual, we can write functions anywhere we write expressions.

• We already could:

(let fun f x = e in f end)

• Here is a more concise way (better style when possible):

(fn x => e)

• Cannot do this for recursive functions (why?)

Dan Grossman CSE341 Spring 2004, Lecture 7 8

'

&

$

%

Returning Functions

Syntax note: -> “associates to the right”

• t1->t2->t3 means t1->(t2->t3)

Again, there is nothing new here.

The key question: What about free variables in a function value?

What environment do we use to evaluate them?

Are such free variables useful?

You must understand the answers to move beyond being a novice

programmer.

Dan Grossman CSE341 Spring 2004, Lecture 7 9

