
CSE 341, Autumn 2005, Assignment 2
ML - Simple Expression Evaluator

Due: Thurs October 13, 10:00pm

Write and test an ML function eval that evaluates simple ML integer expressions, involving integer constants,
variables, addition (+), subtraction (−), multiplication (*), unary negation (~), and let expressions to bind
variables.

If there is an unbound variable in an expression being evaluated, raise an UnboundVariable exception.

To simplify the problem, you don’t need to parse ML programs. Instead, eval takes two arguments: a
datatype representing the expression, and an environment in which the expression should be evaluated.
Define a new type representing expressions — the datatype exp in the code example for Lecture 4 is an
excellent starting point for your type, and the function eval is a starting point for the eval function that
you should write. (However, your eval function should take two arguments rather than one, namely, the
expression to evaluate, and also the environment.)

For example, the ML expression x+3 could be represented as:

Add(Var("x"),Constant(3))

Here’s a more complex example. The ML expression

let val x = 3;
val y = x+1

in
x+y

end;

would be represented as:

Let([Bind("x",Constant(3)), Bind("y",Add(Var("x"),Constant(1)))] ,
Add(Var("x"),Var("y")))

So we’re representing the ML let expression as the data constructor Let, followed by a list of bindings,
and then the expression that is in the body of the let. Each binding is in turn represented using the data
constructor Bind followed by a string (the name of the variable), and an expression (which is evaluated to
get the value for the new variable).

Test Cases:

Demonstrate your eval function on the following examples (at least). These are written here in standard
ML — translate them to the representation described above.

3

3+4*10

1



let val x = 3;
val y = x+1

in
x+y

end;

(* this example should raise an exception *)
let val x = 3;

val y = x-10
in

x+y+z
end;

let val x = 3;
val y = ~x

in
let val x = 100
in

x+y
end

end;

(* and finally, a really horrible example ... but if your function works on
this one, you’ve nailed manipulating the environment! *)
let val x = 3;

val y = x+1
in

let val x = x+y;
val y = x+y

in
x+y

end
end;

Hints:

Represent the environment as a list of pairs of strings and ints. For example, [("x",3), ("y",4)] represents
an environment in which the variable x is bound to 3, and y is bound to 4. To look up the value of a variable,
search for the first match in the list.

Solve the problem in stages. First, write and test a function that just handles evaluating expressions involving
constants (no variables). This should be easy. Next, write and test a lookup function that takes a string
(representing the name of a variable) and an environment, and looks up the binding for that variable in the
environment and returns the result. For example,

lookup("x", [("x",3), ("y",4)])

2



should return 3.

You’ll want to define an exception UnboundVariable — to do this, just write

exception UnboundVariable

To raise the exception, use the expression raise UnboundVariable.

Then add code to handle variables, but not let. (To test this part of the code, invoke eval by feeding
it an appropriate environment — normally, otherwise, when you invoke eval from the command line, the
environment will be the empty list.) Finally, add support for let.

To make it quicker to test your code, in a file (either your solution or another file) define a set of variables
that contain expressions and the results of evaluating them, for example:

val exp1 = Let([Bind("x",Constant(3)), Bind("y",Add(Var("x"),Constant(1)))] ,
Add(Var("x"),Var("y")));

val e1 = eval(exp1,[]);

Then at the command prompt you can just type exp1 or e1.

You don’t need to write that much code for this assignment — excluding blank lines, comments, and test
cases, mine was under 30 lines. However, you may find that figuring out how to handle let and environments
is tricky. (On the positive side, you’ll be working with core computer science concepts, such as binding, scope,
and the like — this is excellent material to understand thoroughly.)

You will very likely need to define mutually recursive functions. To do this, use a series of definitions joined
by and. (See Section 3.2.3 in the text.)

Finally, here’s a bit more on environments. As noted above, when you invoke eval from the command line,
the environment would normally be the empty list. Then, as the expression is evaluated, more complex
environments will be constructed as you evaluate let expressions. Suppose you’ve defined exp1 and e1 as
above.

The expression eval(exp1,[]); evaluates the expression in the empty environment — the result should be
7.

Let’s trace through how the environment is manipulated. The outer environment is []. As your function
processes the bindings in the let, it will first construct an environment that binds x:

("x",3) :: []

Then it will evaluate var y = x+1 in this new environment. Then it (recursively) constructs yet another
environment:

("y",4) :: [("x",3)]

which is used when evaluating x+y.

3



Let expressions can of course be nested, just as in ML. For example, consider:

let val x = 3;
val y = x+1

in
let val x = 100
in

x+y
end

end;

When we’re evaluating the expression x+y, the environment will be [("x",100), ("y",4), ("x",3)]

When we’re finding the value of x when evaluating x+y, we search the list for the first match, namely
("x",100), and so we get a value of 100 for x and 4 for y. This is exactly the behavior we want.

Turnin:

As with HW 1, turn in two files: the source listing for your functions (all in one file), and a log file showing
the results of testing the functions.

Extra Credit:

1. In some languages, for example Scheme, let has a different semantics than in ML. In Scheme, all of
the expressions in the binding part of the let are evaluated in the outer scope, and then the variables
are bound, rather than evaluating the bindings sequentially. Here’s an example. In ML the following
expression evaluates to (100,100).

let val x = 3
in

let val x = 100;
val y = x

in
(x,y)

end
end;

In the outer scope, you bind x to 3. Then in the inner scope, you bind x to 100, and then find the
binding for y using this new binding for x. With the Scheme semantics, however, you get (100,3) —
when computing the value for y, you use the x from the outer scope.

Modify your eval function to use the Scheme semantics rather than the ML semantics. Demonstrate
it working on appropriate test cases.

2. Support real numbers as well as integers. In addition to addition, subtraction, and unary negation for
reals as well as integers, implement the following functions in your interpreted language: sqrt, real,
and round.

4


