
CSE 341:
Programming Languages

Autumn 2005

Lecture 3 — Let bindings, pattern preview, options, and benefits of no

mutation

CSE 341 Autumn 2005, Lecture 3 1



Let bindings

Motivation: Functions without local variables can be poor style and/or

really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Typing rules: Type-check each bi and e in context including previous

bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including

previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

CSE 341 Autumn 2005, Lecture 3 2



More than style

Exercise: hand-evaluate bad_max and good_max for lists [1,2]

[1,2,3], and [3,2,1].

Extra Credit Exercise: As a function of n, how long will it take to

calculate

• bad_max([1, 2, ..., n])?

• bad_max([n, n-1, ..., 1])?

CSE 341 Autumn 2005, Lecture 3 3



Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them

in the same way:

• How do you create values? (function definition, pair expressions,

empty-list and ::)

• How do you use values? (function application, #1 and #2, null,

hd, and tl)

CSE 341 Autumn 2005, Lecture 3 4



Boolean operations

In ML the “and” and “or” operations are named andalso and orelse.

Example:

val x = 10;

val y = 0;

val z = if x>2 andalso y>2 then 3.0 else 4.0;

val w = if x>2 orelse y>2 then 3.0 else 4.0;

CSE 341 Autumn 2005, Lecture 3 5



Patterns – Sneak Preview

In ML patterns provide a useful way of defining functions, often more

readable than using conditionals. (You can use them for HW 1 if you

like!)

(* return the result of reversing a list *)

fun reverse(xs) = if xs=[] then []

else reverse(tl(xs)) @ [hd(xs)]

(* definition of reverse using patterns to test for

the empty list, and also to pick the list apart *)

fun preverse([]) = []

| preverse(x::xs) = preverse(xs) @ [x]

CSE 341 Autumn 2005, Lecture 3 6



Options

Options provide a way of representing a value that might or might not

be present.

• Create a t option with NONE or SOME e where e has type t.

• Use a t option with isSome and valOf

Why not just use a list with zero or one element? An interesting style

trade-off:

• Options better express purpose, enforce invariants on callers,

maybe faster.

• But cannot use functions on options with lists that are already

constructed for some other purpose.

CSE 341 Autumn 2005, Lecture 3 7


