
CSE 341:
Programming Languages

Autumn 2005

Lecture 6 — Tail Recursion; Bindings; Course Motivation

CSE 341 Autumn 2005, Lecture 6 1



Two Versions of Factorial

(* traditional factorial - not tail-recursive *)

fun fact n = if n<1 then 1 else n*fact(n-1);

(* tail-recursive version of factorial *)

(* this version uses an auxiliary function accum_fact

that includes an accumulator (the product so far) *)

fun fact2 n =

let fun accum_fact (n,prod) =

if n<1 then prod else accum_fact(n-1,n*prod)

in

accum_fact(n,1)

end;

CSE 341 Autumn 2005, Lecture 6 2



Min-Exercise - Tail Recursion

Consider the following definition of the length function.

Is it tail recursive? If not, write a tail recursive version.

fun length [] = 0

| length (_ :: xs) = 1 + length(xs)

CSE 341 Autumn 2005, Lecture 6 3



Min-Exercise - Solution

fun length xs =

let fun acc_length ([],n) = n

| acc_length(y::ys,n) = acc_length(ys,n+1)

in

acc_length(xs,0)

end;

CSE 341 Autumn 2005, Lecture 6 4



Tail calls

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE 341 Autumn 2005, Lecture 6 5



Significance of Tail Recursion

Why does this matter?

• Normally, a recursive function requires space proportional to depth

of function calls (“call stack” must “remember what to do next”)

• But particularly for functional languages, the implementation must

ensure that tail calls are implemented in a space-efficient way

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow.

CSE 341 Autumn 2005, Lecture 6 6



Deep patterns

Patterns are much richer than we have let on. A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• An integer constant...

• ...

Inexhaustive matches may raise exceptions and are bad style.

CSE 341 Autumn 2005, Lecture 6 7



Arguments to functions

Interesting fact: Every ML function takes exactly one argument!

• fun f1 () = 34

• fun f2 (x,y) = x + y

• fun f3 pr = let val (x,y) = pr in x + y end

There isn’t any difference to callers between f2 and f3.

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f2 (if e1 then (3,2) else pr)

CSE 341 Autumn 2005, Lecture 6 8



Mini-Exercise - Patterns

Given these definitions:

fun pat1 (x::y::zs) = (x,y,zs)

fun pat2 (x,(y,z)) = (x,y,z)

What is the result of evaluating each of these expressions?

pat1 [1,2,3,4,5,6]

pat2 ((4,5), (10,11))

CSE 341 Autumn 2005, Lecture 6 9



A question?

What’s the best car?

What are the best kind of shoes?

CSE 341 Autumn 2005, Lecture 6 10



Aren’t all languages the same?

Yes: Any input-output behavior you can program in language X you

can program in language Y

• Java, ML, and a language with one loop and three infinitely-large

integers are “equal”

• This is called the “Turing tarpit”

Yes: Certain fundamentals appear in most languages (variables,

abstraction, each-of types, inductive definitions, ...)

• Travel to learn more about where you’re from

No: Most cars have 4 tires, 2 headlights, ...

• Mechanics learn general principles and what’s different

CSE 341 Autumn 2005, Lecture 6 11



Aren’t these academic languages worthless?

In the short-term, maybe: Not many summer internships using ML?

But:

• Knowing them makes you a better Java, C, and Perl programmers

(affects your idioms)

• Java did not exist in 1993; what does not exist now?

• Do Java and Scheme have anything in common? (Hint: check the

authors)

• Eventual vindication: garbage-collection and generics

CSE 341 Autumn 2005, Lecture 6 12



Aren’t the semantics my least concern?

Admittedly, there are many important considerations:

• What libraries are available?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Technology leaders affect the answers to these questions.

Sound reasoning about programs, interfaces, and compilers requires

knowledge of semantics.

CSE 341 Autumn 2005, Lecture 6 13



Aren’t languages somebody else’s problem?

If you design an extensible software system, you’ll end up designing a

(small?) programming language!

Examples: VBScript, JavaScript, PHP, ASP, QuakeC, Renderman,

bash, AppleScript, emacs, Eclipse, AutoCAD, ...

Another view: A language is an interface with just a few functions

(evaluate, typecheck) and a sophisticated input type.

In other words, an interface is just a stupid programming language.

CSE 341 Autumn 2005, Lecture 6 14



Summary

There is no such thing as a “best programming language”. (There are

good general design principles we will study.)

A good language is a relevant, crisp, and clear interface for writing

software.

Software leaders should know about programming languages.

Learning languages has super-linear payoff.

• But you have to learn the semantics and idioms, not a cute

syntactic trick for printing “Hello World”.

End of the course: Language-design goals, mechanisms, and trade-offs

Next time: why ML, Scheme, and Smalltalk?

CSE 341 Autumn 2005, Lecture 6 15


