
CSE 341:
Programming Languages

Autumn 2005

Lecture 7 — Motivation; BNF; First-Class Functions

CSE 341 Autumn 2005, Lecture 7 1

Today

• (course motivation)

• Summarize what we’ve learned with a concise and well-known

notation for recursively-defined language constructs

• Begin first-class functions

CSE 341 Autumn 2005, Lecture 7 2

Why these 3 Languages?

Functional programming (ML, Scheme) encourages recursion,

discourages mutation, provides elegant, lightweight support for

first-class code. Support for extensibility complements OO.

• ML has a polymorphic type system (vindication imminent!)

complementary to OO-style subtyping, a rich module system for

abstract types, and rich pattern-matching.

• Scheme has dynamic typing, “good” macros, fascinating control

operators, and a minimalist design.

• Smalltalk has classes but not types, an unconventional

environment, and a complete commitment to OO.

CSE 341 Autumn 2005, Lecture 7 3

Runners-Up

Runners-up: Miranda (laziness, simplicity and purity), Haskell

(laziness, nonproprietary implementation, but difficult type system),

Prolog (unification and backtracking), CPR(R) (everything that Prolog

has plus constraints).

There are thousands of other languages as well . . .

CSE 341 Autumn 2005, Lecture 7 4

Why not some popular ones?

• Java: you’ve already studied it in 142/143. We’ll look at some

additional features at the end of course and compare it with the

other languages we’ve been studying (e.g., interfaces, anonymous

inner classes, container types)

• C: lots of “implementation-dependent” behavior (a bad property),

and we have CSE303

• C++: an enormous language, and unsafe like C

• Perl: advantages (strings, files, ...) not foci of this course. Python

or Ruby would be closer.

CSE 341 Autumn 2005, Lecture 7 5

Are these useful?

We focus on interesting language concepts in ML/Scheme/Smalltalk.

“Real” programming needs file I/O, strings, floating-point, graphics

libraries, project managers, unit testers, threads, foreign-function

interfaces, . . .

• These languages have all that and more!

• Just not course focus

CSE 341 Autumn 2005, Lecture 7 6

Summary and Some Notation

Learned the syntax, typing rules, and semantics for (a big) part of ML

Can summarize abstract syntax with (E)BNF. Informally:

t ::= int | bool | unit | dtname

| t1 -> t2 | t1 * t2 | {x1=t1, ..., xn=tn}

e ::= 34 | x | (e1,e2) | if e1 then e2 else e3

| let b1 ... bn in e end | e1 e2

| case e of p1 => e1 | ... | pn => en

| e1 + e2 | {x1=e1, ..., xn=en} | C e

b ::= val p = e | fun f p = e

| datatype dtname = C1 of t1 | ... | Cn of tn

p ::= 34 | x | _ | C p | (p1,p2) | {x1=p1, ..., xn=pn}

Things left out of this grammar : n-tuples, field-accessors,

floating-point, boolean constants, andalso/orelse, lists, ...

CSE 341 Autumn 2005, Lecture 7 7

First-Class Functions

• Functions are values. (Variables in the environment are bound to

them.)

• We can pass functions to other functions.

– Factor common parts and abstract different parts.

• We can return functions as values from other functions.

CSE 341 Autumn 2005, Lecture 7 8

Type Inference and Polymorphism

ML can infer function types based on function bodies. Possibilities:

• The argument/result must be one specific type.

• The argument/result can be any type, but may have to be the

same type as other parts of argument/result.

• Some hand-waving about “equality types”

We will study this parametric polymorphism more later.

Without it, ML would be a pain (e.g., a different list library for every

list-element type).

Curious fact: If f:int->int, there are lots of values f could return. If

f:’a->’a, whenever f returns, it returns its argument!

CSE 341 Autumn 2005, Lecture 7 9

Anonymous Functions

As usual, we can write functions anywhere we write expressions.

• We already could:

(let fun f x = e in f end)

• Here is a more concise way (better style when possible):

(fn x => e)

• Cannot do this for recursive functions (why?)

CSE 341 Autumn 2005, Lecture 7 10

Returning Functions

Syntax note: -> “associates to the right”

• t1->t2->t3 means t1->(t2->t3)

Again, there is nothing new here.

The key question: What about free variables in a function value?

What environment do we use to evaluate them?

Are such free variables useful?

You must understand the answers to move beyond being a novice

programmer.

CSE 341 Autumn 2005, Lecture 7 11

