
CSE 341:
Programming Languages

Autumn 2005

Lecture 9 — ADTs, Callbacks, and Currying

CSE 341 Autumn 2005, Lecture 9 1



Key idioms with closures

• Create similar functions

• Pass functions with private data to iterators (map, fold, ...)

• Combine functions

• Provide an ADT

• As a callback without the “wrong side” specifying the

environment.

• Partially apply functions (“currying”)

CSE 341 Autumn 2005, Lecture 9 2



Provide an ADT

A record of functions is much like an object.

Free variables are prviate variables.

Our “set” example is fancy stuff, but you should be able to understand

it.

datatype set = S of {add:int -> set, member:int -> bool}

val empty_set = fn : unit -> set

CSE 341 Autumn 2005, Lecture 9 3



Callbacks

A common idiom: Library takes a function to apply later, when an

event occurs. Examples:

• When a key is pressed, a mouse moved, etc.

• When a packet arrives from the network

The function may be a filter (“I want the packet”) or return a result

(“draw a line”), etc.

Library may accept multiple callbacks. Different callbacks may need

different private state with different types.

Fortunately, the type of a function does not depend on the type of free

variables.

Note: This is why Java added anonymous inner classes (for “event

listeners”).

CSE 341 Autumn 2005, Lecture 9 4



Mutable State in ML (Used in Callback Example)

Style guideline: only use mutable state in ML if it is truly necessary.

(It won’t necessary on any 341 homework or exam, unless explicitly

stated.)

(* create a reference to something *)

val r1 = ref 3;

(* get the value (dereference) *)

val k = !r1;

(* change the value being referred to *)

r1 := 4; (* Note fix from printed copy of the slides! *)

CSE 341 Autumn 2005, Lecture 9 5



Callback example (with mutable state!)

Library interface:

datatype action = ...

fun register_callback : ((int -> bool),action) -> unit

Library implementation (mutation, but hidden from clients)

val cbs : (int -> bool) list ref = ref []

fun register_callback f = cbs := f::(!cbs)

fun on_event i =

let fun f l =

case l of

[] => []

| (f,a)::tl =>

if (f i) then a::(f tl) else inner tl

in f (!cbs) end

CSE 341 Autumn 2005, Lecture 9 6



Example continued

Clients (kind of pseudocode):

register_callback ((fn i => true), Log ...)

register_callback ((fn i => i = 80), Http_get ...)

val lst = countup(1,10)

fun in_lst j =

case lst of [] => false | hd::tl => hd=j orelse in_lst tl

register_callback (in_lst, Other ...)

Key point: client functions can use client-defined data, without library

knowing anything about that data

CSE 341 Autumn 2005, Lecture 9 7



Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we simulated multiple arguments by using one n-tuple

argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” after the logician Haskell Curry. It is used in

some cases in ML; in other languages such as Miranda and Haskell, it

is used for virtually all functions.

Example:

fun add x y = x+y;

val addone = add 1;

What is the type of add? Of addone?

CSE 341 Autumn 2005, Lecture 9 8



More currying idioms

Currying is particularly convenient when creating similar functions with

map or fold:

val sum = foldl (op +) 0;

val product = foldl (op *) 1;

fun mymap f [] = []

| mymap f (x::xs) = f x :: mymap f xs;

val k = mymap (fn x => x+1) [1,2,3];

CSE 341 Autumn 2005, Lecture 9 9



Currying vs. Pairs

Currying is elegant, but has the potential problem that the function

writer chooses which partial application is most convenient, rather

than the user.

Of course, it’s easy to write wrapper functions:

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

CSE 341 Autumn 2005, Lecture 9 10



Function-Call Efficiency

First: Function calls take constant (O(1)) time, so until you’re using

the right algorithms and have a critical bottleneck, forget about it.

That said, ML’s “all functions take one argument” can be inefficient in

general:

• Create a new n-tuple

• Create a new function closure

In practice, implementations optimize common cases. In some

implementations, n-tuples are faster (avoid building the tuple). In

others, currying is faster (avoid building intermediate closures).

In the < 1 percent of code where detailed efficiency matters, you

program against an implementation. Bad programmers worry about

this stuff at the wrong stage and for the wrong code.

CSE 341 Autumn 2005, Lecture 9 11


