
CSE 341:
Programming Languages

Autumn 2005

Lecture 18 — Scheme Intro, Several Binding Forms

CSE 341 Autumn 2005, Lecture 18 1



Scheme

• Like ML, functional focus with imperative features

– anonymous functions, function closures, etc.

– but every binding is mutable

• A really minimalist syntax/semantics

– In the LISP tradition

– Current standard is 50 pages

• Dynamically typed, type safe

– Less “compile-time” checking

– Accepts more perfectly reasonable programs

• Some “advanced” features for decades

– Programs as data, hygienic macros, continuations

CSE 341 Autumn 2005, Lecture 18 2



Which Scheme?

Scheme has a few dialects and many extensions.

We will use “PLT → Pretty Big” for the language and DrScheme as a

convenient environment. Available in the ugrad labs, or you can

download it for a personal machine.

Most of what we do will be “pure Scheme”.

Good documentation available online, including the entire text of

Structure and Interpretation of Computer Programs (linked from the

341 page)

CSE 341 Autumn 2005, Lecture 18 3



Scheme syntax

Syntactically, a Scheme term is either an atom (identifier, number,

symbol, string, ...) or a sequence of terms (t1 ... tn).

Note: Scheme used to get (still gets?) “paren bashed”, which is

hilarious in an XML world.

Semantically, identifiers are resolved in an environment and other

atoms are values.

The semantics of a sequence depends on t1 :

• certain character sequences are “special forms”

• otherwise a sequence is a function application. Semantics same as

ML — evaluate them, then call function (call-by-value)

CSE 341 Autumn 2005, Lecture 18 4



Some special forms

• define

• lambda

• if, cond, and, or

• let, let*, letrec

CSE 341 Autumn 2005, Lecture 18 5



Some predefined values

• #t, #f

• (), cons, car, cdr, null?, list

• eq?, equal?

• a “numeric tower” (integer, rational, real, complex, number) with

math operations (e.g., +, =, <) defined on all of them

• tons more (strings vs. symbols discussed later)

Note: Prefix and variable-arity help make lots of things functions.

CSE 341 Autumn 2005, Lecture 18 6



Parens Matter

Every parenthesis you write has meaning – get used to that fast!

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))) ; correct

(define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))

(define (fact n) (if = n 0 (1) (* n (fact (- n 1)))))

(define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n) (if (= n 0) 1 (* n fact (- n 1))))

(define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))

CSE 341 Autumn 2005, Lecture 18 7



Local bindings

There are 3 forms of local bindings with different semantics:

• let

• let*

• letrec

Also, in function bodies, a sequence of definitions is equivalent to

letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:

• people assume non-malicious clients

• implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.

CSE 341 Autumn 2005, Lecture 18 8


