
CSE341 Spring ’05 Due Friday, April 15
Assignment 2

For this homework your solutions must use pattern-matching. You may not use the functions hd,
tl, null or anything containing the # character. Similarly, don’t use if-then-else in places where
pattern matching will suffice (although there are a small number of places where you will need
if-the-else).

1. More Battleship! We’ll formalize the way we represented a ship in the previous homework by
making a grid ship type:

type grid_ship = (int*int) list

While this is useful for determining if shots hit, it isn’t so good at placing a ship—for
example, there’s no guarantee that the squares composing a ship are are all adjacent. So we
define the following type.

datatype orientation = Horiz | Vert
type ship = { loc : (int*int), dir : orientation, size : int }

Here loc is the corner closest to (0,0) (the upper-left corner of a regulation battleship
board, note this is different from mathematics).

(a) Define functions make horiz and make vert that take an int, and return a horizontal
or vertical grid ship, respectively, of the specified length, starting at (0,0) (note that
ML’s type inference may come up with (int*int) list instead of grid ship and
vice-versa). Hint: recursion and pattern-matching make each of these functions 2 lines
apiece. For example, make horiz 3 evaluates to something like [(0,0),(1,0),(2,0)]
and make vert 2 to [(0,0),(0,1)]. The order of items in the list doesn’t matter.

(b) Define a function shift that takes a grid ship and an int*int pair and returns a
grid ship shifted by the specified amount. So shift([(1,2),(1,3)],(2,3)) becomes
[(3,5),(3,6)].

(c) Define a function ship to grid that takes a ship and returns grid ship. Hint: use the
previous functions. ship to grid{loc=(3,1), dir=Horiz, size=4} would evaluate to
[(3,1),(4,1),(5,1),(6,1)].

(d) Define a function fleet to grid that takes a ship list and returns grid ship list:
a list version of the previous function.

(e) Define a type shot summary that records the number of hits and misses on a fleet. Use
a record type defined as implied by the bindings below.

(f) Define a function fleet salvo summary that takes a list of shots (a salvo) and a
grid ship list and returns a shot summary that summarizes the number of hits and
misses the fleet has sustained. You may assume that no ships overlap and all the shots
are distinct. Modify the shot hit function from last homework to use pattern matching
and use it (also include it in your solution this week). It may be helpful to define some
local functions in fleet salvo summary. This function is similar to the salvo hits
function from last week.

2. Consider the following type definitions.

1



datatype bit = One | Zero
type binary_number = bit list

Write a function eval bin that evaluates a binary number. For example,
eval bin([One,Zero,Zero])=>4:int (note it does not evaluate to 1!). You must write this
function in an accumulator style: you must have a local function eval inner of type
binary number*int->int that is tail recursive (this is actually the natural way to solve this
problem, anyway. . . ).

3. In the following we will represent sets as lists.

(a) Consider the following.

infix mem
fun x mem [] = false

| x mem (y::ys) = x=y orelse x mem ys
fun newmem(x,xs) = if (x mem xs) then xs else x::xs

Type these up and include them in your turn-in. In a comment near these functions,
answer the following three questions. What is the result of newmem(2,[1,2])? Of
newmem("apple" ,["orange","banana"])? Describe in your own words what these
functions do, using only one sentence for each function.

(b) Write a function setof that takes a list of items, possibly with duplicates, and returns a
list with all the duplicates removed. For example, setof [1,2,3,2] =>[1,2,3]. Hint:
use newmem. The order of items in the output list doesn’t matter.

(c) Write an infix function union that computes the union of two lists of items when viewed
as sets. [1,2,3] union [2,3,4] evaluates to [1,2,3,4] (or the same list in a different
order).

(d) Write an infix function isect that computes the intersection of two lists of items when
viewed as sets, evaluating [1,2,3] isect [2,3,4] as [2,3] (again, the order may be
different).

(e) What is the main advantage of not declaring the argument types of these functions?
Include the answer as a comment after your definition of isect.

(f) The Cartesian product of two sets {a1, . . . , an} and {b1, . . . , bm} is the set of all pairs
{(ai, bj)}i≤n,j≤m. Write an accumulator function one cross that forms the cross
product of a single element with a set, so that one cross(1, [1,2,3], nil) evaluates
to [(1,1),(1,2),(1,3)] (as usual, the order may be different).

(g) Write one cross noaccum that is the same as above, but not written in accumulator
style (and not using the above one cross). In a comment near the function state why
this function is not tail recursive.

(h) Write an infix function cross that takes two lists and returns their Cartesian product.
You may assume the lists are already sets, and you must use the accumulator version
one cross. You may use the append operator “@”, but try to do it without append.

Type Summary: A correct assignment will generate the following bindings. That means a
solution that differs from these bindings (except by type synonyms like grid ship vs.
(int*int) list) is incorrect. My solution is 80 lines.

2



type grid_ship = (int * int) list
datatype orientation = Horiz | Vert
type ship = {dir:orientation, loc:int * int, size:int}
val make_horiz = fn : int -> (int * int) list
val make_vert = fn : int -> (int * int) list
val shift = fn : (int * int) list * (int * int) -> (int * int) list
val ship_to_grid = fn

: {dir:orientation, loc:int * int, size:int} -> (int * int) list
val fleet_to_grid = fn

: {dir:orientation, loc:int * int, size:int} list -> (int * int) list list
type shot_summary = {hits:int, misses:int}
val shot_hit = fn : (’’a * ’’b) * (’’a * ’’b) list -> bool
val fleet_salvo_summary = fn

: (’’a * ’’b) list * (’’a * ’’b) list list -> {hits:int, misses:int}
datatype bit = One | Zero
type binary_number = bit list
val eval_bin = fn : bit list -> int
infix mem union isect cross
val mem = fn : ’’a * ’’a list -> bool
val newmem = fn : ’’a * ’’a list -> ’’a list
val setof = fn : ’’a list -> ’’a list
val union = fn : ’’a list * ’’a list -> ’’a list
val isect = fn : ’’a list * ’’a list -> ’’a list
val one_cross = fn : ’a * ’b list * (’a * ’b) list -> (’a * ’b) list
val one_cross_noaccum = fn : ’a * ’b list -> (’a * ’b) list
val cross = fn : ’a list * ’b list -> (’a * ’b) list

3


