
CSE341 Spring ’05 Due Wednesday, April 27
Assignment 3

In this assignment we’ll look at Boolean expressions. This will be great practice for impressing me
when I go dressed as Mr. Spock to the next Star Trek convention. er, I mean, when my friend
goes dressed as Mr. Spock. . . um, anyway, why don’t I just explain the assignment.

Part I

Boolean expressions are what are used in, for example, if statement predicates. The following are
Boolean expressions:

true And (false Or Not false)
Not x And (true Or x)

Because the first expression contains only the constants true and false, we say it is an
expression over constants. It evaluates to true. The second expression contains a variable x; we
have to bind a value to x before we can evaluate the expression. In a little abuse of terminology,
we say that x is free in the expression. We can bind free variables to constants, for example
binding x to true in the expression (Not x And (true Or x)) gives Not true And (true Or
true), which evaluates to false. If we bound x to false, the expression would evaluate to true.

We say that an expression is constant if it contains no free variables. A constant expression can
be evaluated without having to bind anything.

To express a Boolean expressions in ML, we will use the following data type.

datatype ’a expr =
Const of bool

| Var of ’a
| Not of ’a expr
| And of ’a expr * ’a expr
| Or of ’a expr * ’a expr

exception UnboundVar

For the first part of this assignment, we’ll use only string expr. Thus, the ML expression that’s
the same as the second example above is And(Not(Var "x"),Or(Const true, Var "x")).

1. Write a function free vars that takes an expression and return a string list of any a free
variables. Variables should not be repeated if they appear multiple times; use the set
functions from the last homework (and include them in your turnin).

2. Write a function eval that takes a constant expression and returns its value. If eval is
passed a function with free variables, it should raise an UnboundVar exception.

Note: a natural way to solve this problem will evaluate Or(Const true,Var "x") as true
even though it’s not really a constant expression. That’s okay. The same solution will raise
an exception if passed Or(Var "x",Const true), even though it’s the same expression as
before. That’s okay too. The point of this problem is to get practice in evaluating things,
not figuring out the type of an expression.

1

3. Write a function bind1 that takes a variable, a Boolean value and an expression, and returns
an expression with all instances of the variable bound to the truth value. It should be
curried function. For example,

bind1 "x" true (And(Var "x",Or(Var "y", Var "x")))
--> And(Const true,Or(Var "y", Const true))

bind1 "x" true (And(Var "z",Or(Var "y", Var "z")))
--> And(Var "z",Or(Var "y", Var "z"))

4. bind1 is nice, but not very general. For example, we couldn’t use it to change some variable
in an expression to a different variable. Write a function bind that takes a function binder
and an expression, applies binder to the argument of a Var, and leaves the rest of the
expression unchanged. binder should take the value from a Var and return an expression.

Then write functions bindvar and changevar using bind so that bindvar is equivalent to
bind1, and changevar is similar except that variables are changed. For example,

bindvar "x" true (And(Var "x",Or(Var "y", Var "x")))
--> And(Const true,Or(Var "y", Const true))

changevar "x" "help" (And(Var "x",Or(Var "y", Var "x")))
--> (And(Var "help",Or(Var "y", Var "help")))

5. Write a function satisfying assignments that takes an expression and returns a
(string*bool) list list of all satisfying assignments, if any exist. For example,

satisfying_assignments (And(Not(Var "x"),Or(Const true, Var "x")))
--> [[("x",false)]]

satisfying_assignments (And(Not(Var "x"),Or(Const false, Var "x")))
--> nil

satisfying_assignments (Or(Var "x", Var "y"))
--> [[("x",true),("y",true)],[("x",true),("y",false)],

[("x",false),("y",true)]]
satisfying_assignments (Const true)

--> [[]]
satisfying_assignments (Const false)

--> []

Hint: write a local function that takes an expression and a list of its free variables. If the list
is empty, evaluate the expression; otherwise recurse, using map and append to build the new
bindings lists. My implementation of this function is 11 lines.

Part II

It might be hard to believe now, but at some point just evaluating Boolean expressions will seem
like a sort of dull thing to do. An exciting application of Boolean expressions is knowledge
representation and planning in artificial intelligence.

As I write this, I’m at home. I’m hungry. Omlettes are crossing my mind. Omlettes require eggs.
I don’t have eggs. To buy eggs, I need to be where eggs are sold. QFC1 sells eggs. . . How can I

1the University of Washington makes no endorsement of companies, goods, services or products mentioned on this page.

2

represent this complex and seemingly amorphous collection of wisdom in an orderly way so that a
computer could do something with it? Boolean logic to the rescue! The Boolean expressions
above contain only Boolean variables and constants. To reason about the world, we introduce
predicates, which are Boolean-valued functions of (typically) non-Boolean variables. For example,
suppose I have a predicate At over a domain of locations including Home, QFC and Ace2. Then in
my current state At(Home) is true, but At(QFC) and At(Ace) are false. Similarly, I might
represent knowledge about availability of goods using another predicate Sells, whose domain is
(locations * products). For example, Sells(QFC,Eggs) and Sells(Ace,Hammers).

In general, the world is described by a state, which is a list of predicates. All predicates in the
state are true, and any others are false. For example, a state may be [At(home), Sells(QFC,
Eggs), Sells(Ace, Hammers)].

Returning to that which is uppermost in my mind, can I buy some eggs to make my omlette?
Unfortunately not, because I’m at home and the eggs are at QFC, and a general principle in the
real world3 is that I can’t buy something unless I’m at a place that sells it. Again, I can codify
this principle by saying the action BUY(place, item) has a precondition that must be fulfilled
before it can happen, namely At(place) and Sells(place, item).

I’m getting hungrier all the time, but we’re closer to having some homework problems: here we
have a Boolean expression, but the basic terms in it are predicates, rather than simple Boolean
variables like x and y that we had before. We need one more concept. There’s an important
difference between the predicates At(QFC) and At(place). The former, involving the location
constant QFC is called a ground predicate, and in our application we’ll always know whether each
ground predicate is true or false. (In particular, the state contains only ground predicates.) On
the other hand, we can’t evaluate “At(place)”, involving the location variable place without
knowing a binding of place to an actual location. We call QFC a constant atom and place a
variable atom. We’ll represent the difference more explicitly when we implement this in ML, but
in this write-up, we’ll use the convention that constant atoms start with an upper-case letter and
variable atoms start with a lower-case letter: QFC, Eggs and Ace are constant atoms; place and
item are variable atoms.

So, can I buy eggs? More generally, what can I buy right now? This is equivalent to asking to
find all possible bindings of x to locations and y to items such that the precondition of BUY(x,y)
is satisfied by my current state. So that’s our goal—given a predicate expr (as opposed to
string expr as before) representing a precondition like the one for BUY(x,y), and a state, find
all bindings of variables that satisfy the expression.

For example, take the following state.

start = [At(Home), Sells(QFC, Eggs), Sells(QFC, Bread), Sells(Ace, Hammers)]

Then the set of all assignments to x and y satisfying the precondition At(x) and Sells(x,y) is
empty, but if I am in the following state

start = [At(QFC), Sells(QFC, Eggs), Sells(QFC, Bread), Sells(Ace, Hammers)]

then the set of satisfying bindings for the precondition is

[[(x, QFC), (y, Eggs)], [(x, QFC), (y, Bread)]]

2Ace being a hardware store.
3now that webgrocer.com has gone bye-bye.

3

As usual, we’ll break the problem into a number of steps. One point to bear in mind is that the
particular constants and predicates like Home, QFC and Sells used in the discussion above are just
examples; your code should work for any input of this sort. (And if this all seems a little
daunting, rest assured that the solution is significantly shorter than this write-up!)

In ML, we will express predicates as

datatype atom = AtomConst of string | AtomVar of string
type predicate = { pred : string, vals : atom list }

A state is then predicate list (where the predicates better be over constant atoms), and a
precondition is a predicate expr, like the following.

val state = [{pred="At", vals=[AtomConst "home"]},
{pred="Sells",vals=[AtomConst "QFC", AtomConst "Eggs"]}];

val buy_precond = And({pred="At", vals=[AtomVar "place"]},
{pred="Sells", vals=[AtomVar "place",AtomVar "item"]});

In the problem descriptions below, we’ll shorten statements like the above to state=[At(home)]
and buy precond = And(At(place),Sells(place,item)). See Predicate Shorthand for ML
below to see how to make the shorthand actually work in ML.

1. The first thing to do is change variable atoms to constants. Write a Curried function
bindatom that takes a pair of strings (x,c) and an atom a, and returns AtomConst c if a is
AtomVar x, and otherwise returns a unchanged.

2. Write a function bindpred (x,c) pred that binds all atoms in pred according to the
variable x and constant c. You must use map and bindatom. Note: see how writing
bindatom as a Curried function makes things easier?

3. Write a function filter (from scratch) that takes a function pred and a list a1, a2, . . ., and
returns the list of all ai for which pred ai is true. Write functions getconsts and getvars
that take atom lists and return a list of all constant or variable atoms. You must use your
filter.

4. Let p be a predicate. We say that a predicate q matches p if it has the same name, and the
corresponding atoms are either both the same constant, or the atom in p is variable.

Write a function satisfying matches that takes a predicate p and a state, and produces a
list of all value lists from predicates in the state matching p. For example,

satisfying_matches Sells(x,y) [Sells(QFC,Eggs),Sells(Ace,Nails),
At(Home),Sells(QFC,Milk)]

--> [["QFC","Eggs"],["Ace","Nails"],["QFC","Milk"]]
satisfying_matches Sells(QFC,y) [Sells(QFC,Eggs),Sells(Ace,Nails),

At(Home),Sells(QFC,Milk)]
--> [["QFC","Eggs"],["QFC","Milk"]]

5. Now write a function get binding that given two lists of atoms of the same length, returns
the implied binding as a list of string pairs. The idea is that pairing [x,y] with [QFC,Eggs]
should produce the list [("x","QFC"),("y","Eggs")]; that is, x is bound to QFC and y is
bound to Eggs. Similarly, pairing [QFC,y] with [QFC,Eggs] gives [("y","Eggs")]. Define

4

an exception BadGetBinding and raise it if the lists are not the same length or otherwise not
matching (you can assume get binding will only be run on the atom lists of satisfying
matches).

6. What’s the point of having a binding if we don’t apply it? Write a function apply binding
that takes a binding as returned from get binding and a list of predicates, and returns a
list of predicates with the binding applied. For example:

apply_binding [("x","QFC"),("y","Eggs")]
[Sells(x,y),Have(y),Have(z),Have(Nails)]

--> [Sells(QFC,Eggs),Have(Eggs),Have(z),Have(Nails)]

Use map and foldr; your implementation may not be recursive. Hint: a single binding gets
mapped across all predicates; the list of bindings is folded into the predicate list.

7. Write a one-line function bindings for one pred that, given a predicate and a state,
returns a list of the bindings for each satisfying match to the predicate in the state. Use map;
your function cannot be recursive. Hint: the Curried implementation of get binding makes
this elegant.

8. In a comment, explain the difference—and there should be a difference!—between running
bindings for one pred (At(Home)) with the state [At(Home)] and the state [At(Away)]
(here both Home and Away are constant atoms).

9. The previous function gives a list of all the bindings for a state that satisfy a single
predicate. We now want the bindings that satisfy an entire list of predicates. Write a
function bindings for preds that takes a predicate list and a state and does just that. Use
bindings for one pred, map and @. Here are a few examples.

bindings_for_preds [At(x),Sells(x,y)] [At(QFC),Sells(QFC,Eggs)]
--> [[(x,QFC),(y,Eggs)]]

bindings_for_preds [At(x),Sells(x,y)] [At(QFC),Sells(QFC,Eggs),
Sells(QFC,Milk)]

--> [[(x,QFC),(y,Eggs)],[(x,QFC),(y,Milk)]]
bindings_for_preds [At(x),Sells(x,y)] [At(QFC),Sells(QFC,Eggs)

At(Ace),Sells(Ace,Nails)]
--> [[(x,QFC),(y,Eggs)],[(x,Ace),(y,Nails)]]

10. Suppose we had a precondition for buying things that looked like (not Broke) and
At(place) and Sells(place,item). Write this precondition as a predicate expr and
bind it to p1 (i.e., val p1 = ...). In a comment, give the output of running
satisfying assignments on p1 and explain what that tells us about a state that satisfies
that precondition.

11. This function puts it all together. Write a function satisfying bindings that takes a state
and a precondition, and returns a list of all bindings (if any) for which the state satisfies the
precondition. Hint: hopefully after answering the last question you see that for a state to
satisfy a predicate, it must find a binding that’s good for some assignment returned by
satisfying assignments. This can be done by concatenating4 the results of doing the
following to each satisfying assignment asgn of the precondition. Take each binding that

4foldl is useful here. . .

5

satisfies all the true predicates in asgn, apply that binding to the false predicates in asgn,
and keep5 the bindings if the state doesn’t include any of those false bindings6. Phew! Think
about this carefully and make sure you understand what’s going on before implementing it.

It’s essential for this assignment that you really understand what’s going on. There’s not that
much code to write—about 150 lines, in my solution, including the set functions from the last
homework and the multiple bind implementations—but most of those lines required careful
thought.

Extra Credit

Here are some ideas for extra credit. If you have another idea, talk to us. Remember the course
policy on extra credit: if you’re only concerned about your GPA, it’s not worth your time. We’ve
rated these extra credit problems where more stars means a harder problem.

1. (??) Write an expression parser that takes a string like "x and (y or true)" and returns
the corresponding string expr. If you’re ambitious, use the IO structure to interact with
Read-Eval-Print loop (see Project 1 from CSE341 in winter 2004).

2. (?) Let’s formalize actions, which describe how to change state. An action is defined over a
list of variables, and is a precondition with an effect. An effect is a list of allow and deny
predicates. For example, the action BUY(x,y) has the precondition At(x) and Sells(x,y)
and effect {allow=Have(y),deny=nil}. An action GO(x,y) might have precondition At(x)
and effect {allow=At(y),deny=At(x)}, so that GO(Home,QFC) requires that At(Home) be
true, and changes the state so that At(Home) is not present and At(QFC) is.

For this extra-credit, write a datatype for actions, a function that tests if an action can be
applied to a state, and a function that applies the allow and deny lists of an action to a state.

3. (??) A problem is defined by a list of actions, a starting state and a goal state, and produces
a sequence of actions that goes from the start to the goal. In our omlette example, the
actions could be

GO(x,y) = precond At(x)
effect allow=[At(y)], deny=[At(x)]

BUY(item,place) = precond At(place) and Sells(place,item)
effect allow=[Have(item)], deny=[]

MAKE_OMLETTE = precond At(Home) and Have(Eggs)
effect allow=[Have(Omlette)], deny=[]

The start and goal states would then be

start = At(Home), Sells(QFC,Eggs), Sells(QFC,Bread), Sells(Ace, Hammers)
goal = Have(Omlette)

A plan is a series of actions beginning from the start state that results in a state containing
the goal state. In our example, a plan might be GO(Home,QFC), BUY(QFC,Eggs),
GO(QFC,Home), MAKE OMLETTE.

5Maybe using filter?
6isect from the previous assignment will work well.

6

http://www.cs.washington.edu/education/courses/cse341/04wi/homework/project-1.html

Write a planner in ML. One idea is to use breadth-first search, generating all states
reachable by applying valid actions from the start state and searching until the goal is found.
A better solution would use iterative-deepening depth-first search to avoid the
exponential-space problem of breadth-first search. The key to this problem is finding the
right representation of a tree in ML. Don’t try to avoid searching the same states multiple
times, that will needlessly complicate your solution.

Predicate Shorthand for ML

The shorthand for predicates I’ve been using is handy; it saves typing a lot of brackets, quotation
marks and atom constructors. Here’s a way to use similar notation in ML.

val x = AtomVar "x"; val y = AtomVar "y";
val QFC = AtomConst "QFC"; val Ace = AtomConst "Ace";
val Eggs = AtomConst "Eggs"; val Nails = AtomConst "Nails";
fun At(x) = {pred="At", vals=[x]};
fun Sells(x,y) = {pred="Sells",vals=[x,y]};

Now you can type things like bindings for preds [At(x),Sells(x,y)]
[At(QFC),Sells(QFC,Eggs)] directly into ML. This has the advantage of also catching any
typos when you type a predicate. Use this for testing! Extend with your own predicates! I did. . .

Type Bindings

Your solution should generate the following bindings (or their synonyms).

datatype ’a expr
= And of ’a expr * ’a expr
| Const of bool
| Not of ’a expr
| Or of ’a expr * ’a expr
| Var of ’a

exception UnboundVar
infix mem union isect
val mem = fn : ’’a * ’’a list -> bool
val newmem = fn : ’’a * ’’a list -> ’’a list
val setof = fn : ’’a list -> ’’a list
val union = fn : ’’a list * ’’a list -> ’’a list
val isect = fn : ’’a list * ’’a list -> ’’a list
val free_vars = fn : ’’a expr -> ’’a list
val eval = fn : ’a expr -> bool
val bind1 = fn : ’’a -> bool -> ’’a expr -> ’’a expr
val bind = fn : (’a -> ’b expr) -> ’a expr -> ’b expr
val bindvar = fn : ’’a -> bool -> ’’a expr -> ’’a expr
val changevar = fn : ’’a -> ’’a -> ’’a expr -> ’’a expr
val satisfying_assignments = fn : ’’a expr -> (’’a * bool) list list
datatype atom = AtomConst of string | AtomVar of string

7

type predicate = {pred:string, vals:atom list}
val bindatom = fn : string * string -> atom -> atom
val bindpred = fn : string * string -> predicate -> predicate
val filter = fn : (’a -> bool) -> ’a list -> ’a list
val getconsts = fn : atom list -> atom list
val getvars = fn : atom list -> atom list
val satisfying_matches = fn : predicate -> predicate list -> atom list list
exception BadGetBinding
val get_binding = fn : atom list -> atom list -> (string * string) list
val apply_binding = fn

: (string * string) list -> predicate list -> predicate list
val bindings_for_one_pred = fn

: predicate -> predicate list -> (string * string) list list
val bindings_for_preds = fn

: predicate list -> predicate list -> (string * string) list list
val satisfying_bindings = fn

: predicate list -> predicate expr -> (string * string) list list

8

