
CSE341 Spring ’05 Due Friday, May 20
Assignment 5

For this assignment you will implement a small procedural programming language called DysFun
by converting it into Scheme expressions. This uses the same principles introduced in part 2 of
homework 4: Scheme programs are merely lists and can be easily constructed by other Scheme
programs. This is a difficult assignment, so start early. The sample solution is about 200 lines of
liberally-indented code. You will be provided a skeleton code file with some useful included
functions and the rest ready to be filled in. Be sure to read the skeleton code so you know what
provided functions are at your disposal. You are also encouraged to use some of your functions
from homework 4, particularily contains? and split-by.

1 DysFun overview

Like the infix expressions in homework 4, DysFun programs are represented as Scheme
S-expressions and can always be written as a Scheme quoted list, despite looking quite unlike
Scheme code. See the provided code for an example.

Expressions

DysFun expressions are like infix expressions, with the addition of C/Java-style function calls. A
function call takes the form:

f (arg1, arg2, arg3, ...)

Of course, function calls can be mixed with infix operators as you would expect:

42 - foo(bar * bob, 24)

The provided function application? will detect when a DysFun expression is a function
application.

Statements

In the simplest case a DysFun statement is just a DysFun expression, although there are several
special forms that will be discussed later. Because semi-colons are used to begin Scheme
comments, DysFun statements must be separated with exclamation marks (!). Remember that
spaces must still be used liberally in Scheme S-expressions, so a typical sequence of statements
might look like:

display (2 * 2) !
newline () !
display ("Hello, world!") !

A sequence of statements will be referred to as a statement block.

1

Special forms

In addition to plain expressions, there are several special forms that can appear as statements.
Unlike in Java and C, they must still be terminated with an exclamation mark.

Assignment

An assignment takes the form:

VAR := EXPR

Where VAR is a Scheme symbol and EXPR is a DysFun expression. For example:

x := 2 + 2 !
y := x * x !

Assignments are always mutating, just like in C and Java. The included function assign? will
detect when an expression is an assignment statement.

If

An if statement takes the form:

if CONDITION STATEMENT BLOCK

Where CONDITION is a DysFun expression and STATEMENT BLOCK is a block of !-separated
statements. Because DrScheme allows curly braces to be used as parentheses, you can write if
statements in a (somewhat) familiar form:

if (x < 5) {
x := x + 5 !
display ("This does nothing useful") !

} !

Take notice that if statements are like any other statement and must be terminated with with !.
Don’t be fooled by curly braces or formatting; this piece of code is represented as a list in Scheme
and can be processed with normal list-processing functions. The included function if? detects
when an expression is an if statement. if statements may be nested.

If-else

An if-else statement takes the form:

if CONDITION BLOCK1 else BLOCK2

As in:

2

if (x < 5) {
display ("X is < 5") !

} else {
display ("X is >= 5") !

} !

The included function if-else? detects when an expression is an if-else statement. The
semantics are the same as in C or Java. if-else statements may be nested.

While

A while statement takes the form:

while CONDITION BLOCK

As in:

while (x < 10) {
x := x + 1 !
display (x) !

} !

The included function while? detects when an expression is a while statement. while
statements may be nested.

Functions

A DysFun function definition takes the form:

func FUNCNAME (arg1, arg2, arg3, ...) BLOCK

For example, a function of no arguments that loops forever, printing numbers would look like:

func useless () {
x := 0 !
while (#t) {

display (x) !
newline () !
x := x + 1 !

} !
}

Notice that variables can be used without any prior declaration; in Scheme (and C or Java, for
that matter), this is not the case. Variables used in this way have scope local to the function.
Functions may not be nested (unless you do the extra credit).

3

Return

Within the body of a function, the special function return, taking a single argument, causes the
function to immediately return that argument, no matter where the return occurs. Essentially, it
works the same way as return in C and Java. Consider:

func double (x) {
return (2 * x) !
display ("This is never executed") !

}

2 Implementation Strategy

We have provided a file hw5-skel.scm on the course web that contains several useful functions as
well as an example of a DysFun function.

Plain Expressions

A plain expression can be converted to Scheme much like infix expressions in homework 4, so
infix->prefix is an excellent starting point. There are two major differences, though:

• The set of infix operators (and the order in which to test for them) is dictated by the
provided top-level definition infix-operators. This list is ordered from lowest precedence
to highest precedence, which is the order in which you want to split an expression into
sub-expressions.

• You need an additional case to handle function calls. Remember that the argument list can
be empty for a call to a no-argument function.

Unfortunately, comma (,) has a special meaning in quoted Scheme expressions and does not show
up in argument lists as you would expect. A function has been provided for you called
unquote->comma which will give you a list suitable for splitting by the symbol |,|. You can think
of it as a black box and use it without worrying too much about what it’s doing, as long as you
do use it. For example:

(unquote->comma ’(1, 2 * (1 + 1), foo)) => (1 |,| 2 * (1 + 1) |,| foo)

The symbol |,| might look strange, but it can be quoted in your implementation (for example, to
pass to split-by) as ’|,|

Assignment

You may assume that anything on the left-hand side of an assignment has already been bound.
Thus, assignment translates rather naturally into Scheme set!

4

If

An if expression translates easily into a Scheme if expression. Since there is no alternate (else
branch), you can simply omit it from the resulting Scheme expression, i.e.:

(if CONDITION
CONVERTED CODE BLOCK GOES HERE)

Keep in mind that a DysFun statement block can translate to more than one Scheme expression.
You will have to use begin to cope with having multiple expressions in the consequent of a
Scheme if.

If-else

if-else translates almost the same as if, except that there is an alternate block that must be
represented in the resulting if expression in Scheme.

While

while is somewhat tricky. Although there are looping constructs in Scheme, you are not allowed
to use them on this assignment. Rather, you must convert the loop into a function that calls itself
tail-recursively. In order for the function to be able to call itself, it will have to be introduced in a
letrec and given a name. Choosing this name is non-trivial; if you pick the name of a variable
used elsewhere in the DysFun program it could cause it to behave incorrectly. Luckily, DrScheme
has a function, gensym, which returns a symbol guaranteed to be different from every other
symbol ever encountered. You can use this to automatically generate a name for your looping
function.

Functions

Implementing functions is likely the most difficult part (conceptually) of this assignment. The
Scheme lambda expression you produce must:

• Initially bind all variables that might later be used to dummy values. This is because a
DysFun function does not need to declare its local variables before using them. (Use let
and the unbound-vars function which you will write).

• Have a special function in its environment, return, which when called with a value causes
the function to immediately return that value (use a continuation with let/cc)

Keep in mind that a DysFun argument list has commas while a Scheme lambda does not. You
can use unquote->comma and the built-in function filter to aid you here.

3 Problems

Find the following function stubs in the skeleton code and complete them to work as specified.
For functions that process individual DysFun statements, you should assume that the statement

5

will be passed in by itself without the trailing ! terminator. Many of your functions will have to
recursively call each other, so be prepared to use functions that you haven’t written yet.

1. Write a function union of the form (union ls1 ls2), where ls1 and ls2 are lists. The
result should be the union of the two lists treated as sets; in other words, the result should
not have any duplicate elements. You may assume that ls1 and ls2 do not contain
duplicate elements to begin with. For example, (union ’(a b) ’(a c)) => (a b c),
although the order of the result can differ.

2. Write a function unbound-vars of the form (unbound-vars bound expr), where expr is an
arbitrary piece of DysFun code and bound is a list of variables explicitly bound in the code
already (for example, the arguments to a function). The result should be the set of all
unbound variables (symbols) in the expression, with no duplicates (hint : use union). A
symbol is unbound if it not in bound, the list of explicitly bound variables, and is also not in
the provided top-level binding reserved-symbols, a list of symbols that have special
meanings and should not be considered local variables. Remember that DysFun code is
represented as a Scheme S-expression. An S-expression can either be an atom (the only kind
of which you care about are symbols) or a pair (a cons cell) of two other S-expressions. You
should be able to write the function taking into account only 3 different cases. Use built-in
type predicates such as symbol? and pair?

3. Write a function dysfun-expr->scheme-expr of the form (dysfun-expr->scheme-expr
expr), where expr is a plain DysFun expression. The result should be an equivalent Scheme
expression. Remember that infix->prefix from homework 4 can be used as a starting
point.

4. Write a function dysfun-assign->scheme-set of the form (dysfun-assign->scheme-set
expr), where expr is a DysFun assignment statement. The result should be an equivalent
Scheme set! expression.

5. Write a function dysfun-if->scheme-if of the form (dysfun-if->scheme-if expr),
where expr is a DysFun if statement. The result should be an equivalent Scheme if
expression.

6. Write a function dysfun-if-else->scheme-if of the form (dysfun-if-else->scheme-if
expr), where expr is a DysFun if-else statement. The result should be an equivalent Scheme
if expression.

7. Write a function dysfun-while->scheme-expr of the form (dysfun-while->scheme-expr
expr), where expr is a DysFun while statement. The result should be an equivalent Scheme
expression.

8. Write a function dysfun-stmt->scheme-expr of the form (dysfun-stmt->scheme-expr
expr), where expr is a DysFun statement. This function should simply use the provided
predicates to test what kind of statement expr is and dispatch one of the above functions to
convert it to a Scheme expression.

9. Write a function dysfun-stmts->scheme-exprs of the form
(dysfun-stmts->scheme-exprs expr), where expr is a DysFun !-separated statement
block. The result should be a list of equivalent Scheme expressions. Remember that your
other routines expect the ! to be stripped off.

6

10. Write a function dysfun-func->scheme-lambda of the form
(dysfun-func->scheme-lambda expr), where expr is a DysFun function definition. The
result should be an equivalent Scheme lambda expression.

11. Write a DysFun function of the form func map-loop (f, ls) { ... } that works the
same as the Scheme function map; that is, it returns a new list which is the result of applying
f to each element in ls. All the built-in Scheme functions listed in the provided binding
snarfed-functions are available to be used directly in your DysFun code (with DysFun
syntax, of course). Your function must be implemented as a loop rather than recursively.
Bind it to the top-level binding map-loop-dysfun. Run dysfun-func->scheme-lambda on
it and bind the result to map-loop-scheme so that you can examine the Scheme code your
implementation produces. Finally, run eval on map-loop-scheme and bind the result to
map-loop. You may now call the function map-loop like any other Scheme function to test if
it works. An example of how to do this is provided in the skeleton code with a DysFun
function that calculates Fibonacci numbers.

Extra credit:

Clearly indicate in comments at the top of your program whether you have attempted the extra
and which parts you have attempted.

1. Modify your implementation of while loops so that the no-argument functions continue and
break are available within the loop body. Continue causes the loop to immediately start
over (testing the condition and breaking out of the loop if necessary, of course), while break
causes the loop to immediately terminate.

2. Modify your implementation to allow nested functions to be declared and called within other
functions. This means that you will need to handle function declarations as possible
statements. In addition, you should not use unbound-vars to determine which variables are
implicitly bound in the function; it is too naive to properly handle nested functions. Feel free
to write a smarter version, but give it a different name and leave unbound-vars unchanged.

7

