
CSE 341:
Programming Languages

Spring 2005

Lecture 4 — Mutation; “one-of” types; user-defined types

CSE 341 Spring 2005, Lecture 4 1



Where are we

• Done features: functions, tuples, lists, options, local bindings

• Done concepts: syntax vs. semantics, environments

• Today features: record types, datatypes, type synonyms,

pattern-matching

• Today concepts: Mutation-free, “one-of” types,

constructors/destructors, case-coverage

CSE 341 Spring 2005, Lecture 4 2



You want to change something?

There is no way to mutate (assign to) a binding, pair component, or

list element.

How could the lack of a feature make programming easier?

In this case:

• Amount of sharing is indistinguishable

– Aliasing irrelevant to correctness!

• Bindings are invariant across function application

– Mutation breaks compositional reasoning, a (the?) intellectual

tool of engineering

CSE 341 Spring 2005, Lecture 4 3



Base types and compound types

Languages typically provide a small number of “built-in” types and

ways to build compound types out of simpler ones:

• Base types examples: int, bool

• Type builder examples: tuples, lists, records

Base types clutter a language definition; better to make them libraries

when possible.

• ML does this to a remarkable extent (e.g., we will soon define

away bool and conditionals)

Good to let programmers bind types to type names, just like we bind

values to variables.

CSE 341 Spring 2005, Lecture 4 4



Compound-type flavors

Conceptually, just a few ways to build compound types:

1. “Each-of”: A t contains a t1 and a t2

2. “One-of”: A t contains a t1 or a t2

3. “Self-reference”: The definition of t may refer to t

Examples:

• int * bool

• int option

• int list

Remarkable: A lot of data can be described this way.

Convenient to think of as trees.

(optional) jargon: Product types, sum types, recursive types

CSE 341 Spring 2005, Lecture 4 5



User-defined types

There are many reasons to define your own types:

1. Using a tuple with 12 fields is incomprehensible

2. Writing down large types is unpleasant; we have computers for

that

3. Large programs can use abstract types to be robust to change

• A couple weeks ahead

4. So the language doesn’t have to “bake in” lists and options and

. . .

CSE 341 Spring 2005, Lecture 4 6



Datatype

One-of types are less similar across languages

• We’ll discuss OO’s approach to one-of in a few weeks

In ML, we use make a new type with a datatype binding, e.g.:

datatype mytype = TwoInts of int*int

| Str of string

| Pizza

Semantics: Extend the environment with three constructors (in part,

functions/constants that produce values of type mytype)

So we have a way to build them... what’s missing?

CSE 341 Spring 2005, Lecture 4 7



The old way

For lists, we had a way to:

• Test which variant a value was

• Extract the values from value-carrying variants

– Makes no sense if you have the wrong variant

What would this look like for mytype?

CSE 341 Spring 2005, Lecture 4 8



The new way

Rather than add variant-tests and variant-destructors (non-standard

jargon and nothing to do with C++ destructors), ML has a case

expression that uses pattern-matching.

In its simplest form, case has one pattern for each constructor in a

dataype and binds one variable for each value carried. Example:

case e of

TwoInts(i1,i2) => e1

| Str s => e2

| Pizza => e3

What are the typing rules?

What are the evaluation rules?

CSE 341 Spring 2005, Lecture 4 9



Type-checking case

In addition to binding local variables and requiring branches to have

the same type, the typing rules for case prevent some run-time errors:

• Exhaustiveness: No test can “fail” (a warning)

• Redundancy: No test can be “impossible” (an error)

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

• Powerful enough to define our own tests and destructors

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment

• Can use it for any type (later)

• Can have deep patterns (later)

CSE 341 Spring 2005, Lecture 4 10


