
CSE 341:
Programming Languages

Spring 2005

Lecture 7 — More on Tail Recursion & Accumulators; Deep Patterns

CSE 341 Spring 2005, Lecture 7 1

Where we are

Two implementation tidbits: call stack & cons cells

Tail recursion avoids call stack overhead

Accumulator-style recursion typically tail-recursive

Today:

• one more tail/accumulator example

• more on pattern-matching as an elegant generalization of variable

binding.

• first-class functions (closures, functions as values)—A really key

idea in computer science

CSE 341 Spring 2005, Lecture 7 2

Tail calls

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE 341 Spring 2005, Lecture 7 3

So what?

Why does this matter?

• Implementation takes space proportional to depth of function calls

(“call stack” must “remember what to do next”)

• But in functional languages, implementation must ensure tail calls

eliminate the caller’s space

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow.

CSE 341 Spring 2005, Lecture 7 4

Deep patterns

Patterns are much richer than we have let on. A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• An integer constant...

• ...

CSE 341 Spring 2005, Lecture 7 5

The truth, the whole truth, and nothing but the
truth

It’s really:

• val p = e

• fun f p1 = e1 | f p2 = e2 ... | f pn = en

• case e of p1 => e1 | ... | pn => en

Inexhaustive matches may raise exceptions and are bad style.

Example: could write Rope pr or Rope (r1,r2)

Fact: Every ML function takes exactly one argument!

CSE 341 Spring 2005, Lecture 7 6

Some function examples

• fun f1 () = 34

• fun f2 (x,y) = x + y

• fun f3 pr = let val (x,y) = pr in x + y end

Is there any difference to callers between f2 and f3?

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f2 (if e1 then (3,2) else pr)

CSE 341 Spring 2005, Lecture 7 7

