
CSE 341:
Programming Languages

Spring 2005

Lecture 8 — First Class Functions, Closures, . . .

CSE 341 Spring 2005, Lecture 8 1



Today

• Functions as first-class citizens

• Examples of functions taking and returning other functions

• Discuss free variables in function bodies

• In general, discuss environments and lexical scope

• See key idioms using first-class functions

CSE 341 Spring 2005, Lecture 8 2



A (Partial) Motivating Example—Sorting

Sorting is useful in many contexts, for many knids of data.

Don’t want specialized sort routine for each

(sort(int list), sort(string list)...)

Polymorphism, classes, etc. only handle part of the problem:

• sort(’a list) -> ’a list is good,. . .

• but in what order? based on what part of the data?

Partial answer: write a function to compare two records, pass it to

sort along with data

What if you don’t know at “compile time”?

Fuller answer: write a function that dynamically builds (e.g., based on

user input) a function to compare two records, pass it to sort . . .

CSE 341 Spring 2005, Lecture 8 3



First-class functions

Want: ability to treat functions “just like” (other) data—assign to

variables, pass as values, return as results, etc.

While “call-backs” like record comparison in sorting are one

motivation, and a commonly occuring case, more general treatment of

functions enables a very different style of programming, because it

enables new styles of control structure.

Need: a very precise understanding of the meaning (“semantics”) of

functions, function definitions, function aoolications (calls), etc.

CSE 341 Spring 2005, Lecture 8 4



If you remember one thing...

We evaluate expressions in an evironment, and function bodies in

an environment extended to map arguments to values.

But which one? The environment in which the function was defined!

An equivalent description:

• Functions are values, but they’re not just code.

• fun f p = e and fn p => e evaluate to values with two parts

(a “pair”): the code and the current environment

• Function application evaluates the “pair”’s function body in the

“pair”’s environment (extended)

• This “pair” is called a (function) closure.

There are lots of good reasons for this semantics.

For hw, exams, and competent programming, you must “get this”!

CSE 341 Spring 2005, Lecture 8 5



Example 1

val x = 1

fun f y = x + y

val x = 2

val y = 3

f (x+y)

CSE 341 Spring 2005, Lecture 8 6



Example 2

val x = 1

fun f y = let val x = 2 in fn z => x + y + z end

val x = 3

val g = f 4

val y = 5

g 6

CSE 341 Spring 2005, Lecture 8 7


