
CSE 341:
Programming Languages

Spring 2005

Lecture 10 — Map, Fold, Curry

CSE 341 Spring 2005, Lecture 10 1



Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we simulated multiple arguments by using one n-tuple

argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” after its inventor, Haskell Curry

Example:

val inorder3 = fn x => fn y => fn z =>

z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_pos = inorder3 0 0

CSE 341 Spring 2005, Lecture 10 2



More currying idioms

Currying is particularly convenient when creating similar functions with

iterators:

fun fold_old (f,acc,l) =

case l of

[] => acc

| hd::tl => fold_old (f, f(acc,hd), tl)

fun fold_new f = fn acc => fn l =>

case l of

[] => acc

| hd::tl => fold_new f (f(acc,hd)) tl

fun sum1 l = fold_old ((fn (x,y) => x+y), 0, l)

val sum2 = fold_new (fn (x,y) => x+y) 0

There’s even convenient syntax: fun fold_new f acc l = ...

CSE 341 Spring 2005, Lecture 10 3



Currying vs. Pairs

Currying is elegant, but a bit backward: the function writer chooses

which partial application is most convenient.

Of course, it’s easy to write wrapper functions:

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

CSE 341 Spring 2005, Lecture 10 4


