
CSE 341:
Programming Languages

Spring 2005

Lecture 19 — Delayed Evaluation & Streams

CSE 341 Spring 2005, Lecture 19 1



Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In ML, Scheme, and Java:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent if function argument has no effects/non-termination

CSE 341 Spring 2005, Lecture 19 2



Streams

• A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you’ll never get null.

• The universe is finite, so a stream must really be an object that

acts like an infinite list.

• The idea: use a function to describe what comes next.

CSE 341 Spring 2005, Lecture 19 3



An Example

The Riemann zeta function:

ζ(s) =
∏
i≥1

1

1 − p−s
i

where pi is he ith prime.

CSE 341 Spring 2005, Lecture 19 4


