
'

&

$

%

CSE 341:
Programming Languages

Winter 2005

Lecture 17— varargs and apply, implementing higher-order functions

CSE341 Winter 2005, Lecture 17 1



'

&

$

%

Today:

• Some “easy” Scheme odds and ends

• Implementing higher-order functions and exceptions

CSE341 Winter 2005, Lecture 17 2



'

&

$

%

Scheme varargs

In Scheme, functions can:

• Take exactly n arguments, for any n ≥ 0

– Examples: cons (n = 2), null? (n = 1)

• Take n or more arguments, for any n ≥ 0

– Examples: + (n = 0), string=? (n = 2)

For user-defined functions taking 0 or more arguments:

(define f (lambda x e)) ; no parens on x, x is a list

(f 3 4 "hi" (list 2 4))

For user-defined functions taking n > 0 or more arguments:

(define g (lambda (x y . z) e)) ; note ., z is a list

(g 3 4) (g 3 4 5) (g 3 4 5 6)

Really just sugar: implicitly put arguments in a list.

CSE341 Winter 2005, Lecture 17 3



'

&

$

%

Implementing Languages

Mostly 341 is about language meaning, not “how can an

implementation do that”, but it’s important to “dispel the magic”.

At super high-level, there are two ways to implement a language A:

• Write an interpreter in language B that evaluates a program in A

• Write a compiler in langage B that translates a program in A to

a program in language C (and have an implementation of C)

In theory, this is just an implementation decision.

Issue: Higher-order functions and exceptions seem less straightforward.

CSE341 Winter 2005, Lecture 17 4



'

&

$

%

Implementing Higher-Order Functions

The magic: How is the “right environment” around for lexical scope

(the environment from when the function was defined)?

Lack of magic: Implementation keeps it around!

Interpreter:

• An interpreter has a “current environment”

• To evaluate a function (expression), create a closure (value), a

pair of the function and the environment.

• Application will now apply a closure to an argument: Interpret

function body, but instead of using “current environment”, use

closure’s environment extended with the argument.

Note: This is a direct “coding” of the semantics we defined several

weeks ago.

CSE341 Winter 2005, Lecture 17 5



'

&

$

%

Compiling Higher-Order Functions

The key to the interpreter approach: The interpreter has an explicit

environment and can “change” it to implement lexical scope.

We can also compile to a language without free variables:

Instead of an implicit environment, we pass an explicit environment to

every function.

• As with interpreter, we build a closure to evaluate functions.

• But all functions now take one extra argument.

• Application passes a closure’s code its own environment for the

extra argument.

• Evaluating variables uses this extra argument.

Plus: Lots of data-structure optimizations so variable-lookup is fast

(often a read from a known-size record).

CSE341 Winter 2005, Lecture 17 6



'

&

$

%

Implementing Exceptions

Implementing exceptions (e.g., (make-handle e1 e2)) is:

• easier: dynamically scoped

• harder: have to “immediately transfer control elsewhere”

In addition to the current environment, we have a “current handler”,

i.e., where to transfer control to when raising an exception.

Calling a function does not change the handler (dynamic scope).

Installing a nested handler changes the handler for evaluating a

subexpression (e.g., e1).

In our example, what to do if e1 raises an exception it doesn’t handle?

• Evaluate e2, under environment and handler we had when we

started evaluating e1.

• Return this result for the evaluation of (make-handle e1 e2).

CSE341 Winter 2005, Lecture 17 7



'

&

$

%

Implementing exceptions, continued

The hard part: “Stop what you’re doing” and evaluate e2. Interpreter

approaches:

• “Bubble-up”: For every subexpression, interpreter returns a one-of

type “normal value” or “exception”. (Slow, cumbersome,

straightforward.)

• “Control transfer”: Use the interpreter-language (e.g., Scheme) to

do what you need (e.g., let/cc). (Elegant, unobtrusive, requires

powerful interpreter-language.)

Compiler approaches the same in theory, but if target language is

assembly, bubbling up can be less cumbersome: Special code can treat

the call-stack as a data object and explicitly pop until reaching handler.

CSE341 Winter 2005, Lecture 17 8


