CSE 341: Programming Languages

Winter 2005
Lecture 2-ML functions, pairs, and lists

What is a programming language?

Here are separable concepts for defining and evaluating a language:

- syntax: how do you write the various parts of the language?
- semantics: what do programs mean? (One way to answer: what are the evaluation rules?)
- idioms: how do you typically use the language to express computations?
- libraries: does the language provide "standard" facilities such as file-access, hashtables, etc.? How?
- tools: what is available for manipulating programs in the language?

Our focus

This course: focus on semantics and idioms to make you a better programmer

Reality: Good programmers know semantics, idioms, libraries, and tools

Libraries are crucial, but you can learn them on your own.

Goals for today

- Add some more absolutely essential ML constructs
- Discuss lots of "first-week" gotchas
- Enough to do first few homework problems (rest after Monday)
- And we will learn better constructs soon

Note: These slides make much more sense in conjunction with lec2.sml.

Recall a program is a sequence of bindings...

Function Definitions

... A second kind of binding is for functions
Syntax: fun $x 0$ ($x 1$: t1, ..., $x n: t n$) $=e$
Typing rules:

1. Context for e is (the function's context extended with) $\mathrm{x} 1: \mathrm{t} 1, \ldots, \mathrm{xn}: \mathrm{tn}$ and:
2. x 0 : ($\mathrm{t} 1 * \ldots * \mathrm{tn})$ - t t where:
3. e has type t in this context
(This "definition" is circular because functions can call themselves and the type-checker "guessed" t.)
(It turns out in ML there is always a "best guess" and the type-checker can always "make that guess". For now, it's magic.)

Evaluation: \quad A FUNCTION IS A VALUE.

Function Applications (a.k.a. Calls)

Syntax: e0 (e1,...,en)
Typing rules (all in the application's context):

1. e0 must have some type ($\mathrm{t} 1 * \ldots * \mathrm{tn}$) -t
2. ei must have type $\mathrm{ti}($ for $\mathrm{i}=1, \ldots, \mathrm{i}=\mathrm{n}$)
3. e0 (e1, ...,en) has type t

Evaluation rules:

1. e0 evaluates to a function f in the applicaton's environment
2. ei evaluates to value vi in the application's environment
3. result is f 's body evaluated in an environment extended to bind xi to vi (for $i=1, \ldots, i=n$).
("an environment" is actually the environment where f was defined)

Some Gotchas

- The $*$ between argument types (and pair-type components) has nothing to do with the $*$ for multiplication
- In practice, you almost never have to write argument types
- But you do for the way we will use pairs in homework 1
- And it can improve error messages and your understanding
- But type inference is a very cool thing in ML
- Types unneeded for other variables or function return-types
- Context and environment for a function body includes:
- Previous bindings
- Function arguments
- The function itself
- But not later bindings

Recursion

- A function can be defined in terms of itself.
- This "makes sense" if the calls to itself (recursive calls) solve "simpler" problems.
- This is more powerful than loops and often more convenient.
- Many, many examples to come in 341.

Pairs

Our first way to build compound data out of simpler data:

- Syntax to build a pair: (e1,e2)
- If e1 has type t1 and e2 has type t2 (in current context), then (e1, e2) has type t1*t2.
- (It might be better if it were ($\mathrm{t} 1, \mathrm{t} 2$), but it isn't.)
- If e1 evaluates to v1 and e2 evaluates to v2 (in current environment), then (e1,e2) evaluates to (v1,v2).
- (Pairs of values are values.)
- Syntax to get part of a pair: \#1 e or \#2 e.
- Type rules for getting part of a pair: \qquad
- Evaluation rules for getting part of a pair:

Lists

We can have pairs of pairs of pairs... but we still "commit" to the amount of data when we write down a type.

Lists can have any number of elements:

- [] is the empty list (a value)
- More generally, [v1, v2, ...,vn] is a length \boldsymbol{n} list
- If e1 evaluates to v and e 2 evaluates to a list [v1, v2, ..., vn], then $\mathrm{e} 1: \mathrm{e} 2$ evaluates to $[\mathrm{v}, \mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}]$ (a value).
- null e evaluates to true if and only if e evaluates to []
- If e evaluates to $[\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}$], then hd e evaluates to v 1 and tl e evaluates to [v2,..., vn].
- If e evaluates to [], a run-time exception is raised (this is different than a type error; more on this later)

List types

A given list's elements must all have the same type.
If the elements have type t, then the list has type t list. Examples: int list, (int*int) list, (int list) list.

What are the type rules for ::, null, hd, and tl ?

- Possible exceptions do not affect the type.

Hmmm, that does not explain the type of [] ?

- It can have any list type, which is indicated via 'a list.
- That is, we can build a list of any type from [].
- Polymorphic types are 3 weeks ahead of us.
- Teaser: null, hd, and tl are not keywords!

Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?

