
CSE 341:
Programming Languages

Spring 2006

Lecture 2 — ML Functions, Pairs and Lists

CSE 341 Spring 2006, Lecture 2 1



Goals for today

• Add some more absolutely essential ML constructs

• Discuss lots of “first-week” gotchas

• Enough to do first several homework problems

– We will learn more and better constructs soon

Note: These slides (and most slides all quarter) will make much more

sense in conjunction with the corresponding code file (lec02.sml).

Recall a program is a sequence of bindings...

CSE 341 Spring 2006, Lecture 2 2



Function Definitions
... A second kind of binding is for functions

Syntax: fun x0 (x1 : t1, ..., xn : tn) = e

Typing rules:

1. Context for e is (the function’s context extended with)

x1:t1, ..., xn:tn and :

2. x0 : (t1 * ... * tn) -> t where:

3. e has type t in this context

(This “definition” is circular because functions can call themselves and the

type-checker “guessed” t.)

(It turns out in ML there is always a “best guess” and the type-checker can

always “make that guess”. For now, it’s magic.)

Evaluation: A FUNCTION IS A VALUE.

CSE 341 Spring 2006, Lecture 2 3



Function Applications (a.k.a. Calls)

Syntax: e0 (e1,...,en)

Typing rules (all in the application’s context):

1. e0 must have some type (t1 * ... * tn) -> t

2. ei must have type ti (for i=1, ..., i=n)

3. e0 (e1,...,en) has type t

Evaluation rules:

1. e0 evaluates to a function f in the applicaton’s environment

2. ei evaluates to value vi in the application’s environment

3. result is f ’s body evaluated in an environment extended to bind

xi to vi (for i=1, ..., i=n).

(“an environment” is actually the environment where f was defined)

CSE 341 Spring 2006, Lecture 2 4



Some Gotchas

• The * between argument types (and pair-type components) has

nothing to do with the * for multiplication

• In practice, you almost never have to write argument types

– But you may for the way we will use pairs in homework 1

– And it can improve error messages and your understanding

– But type inference is a very cool thing in ML

– Types unneeded for other variables or function return-types

• Context and environment for a function body includes:

– Previous bindings

– Function arguments

– The function itself

– But not later bindings

CSE 341 Spring 2006, Lecture 2 5



Recursion

• A function can be defined in terms of itself.

• This “makes sense” if the calls to itself (recursive calls) solve

“simpler” problems.

• This is more powerful than loops and often more convenient.

• Many, many examples to come in 341.

CSE 341 Spring 2006, Lecture 2 6



Pairs

Our first way to build compound data out of simpler data:

• Syntax to build a pair: (e1,e2)

• If e1 has type t1 and e2 has type t2 (in current context), then

(e1,e2) has type t1*t2.

– (It might be better if it were (t1,t2), but it isn’t.)

• If e1 evaluates to v1 and e2 evaluates to v2 (in current

environment), then (e1,e2) evaluates to (v1,v2).

– (Pairs of values are values.)

• Syntax to get part of a pair: #1 e or #2 e.

• Type rules for getting part of a pair:

• Evaluation rules for getting part of a pair:

CSE 341 Spring 2006, Lecture 2 7


