
CSE 341:
Programming Languages

Spring 2006

Lecture 3 — Lists, Let bindings, options

CSE 341 Spring 2006, Lecture 3 1



Lists
We can have pairs of pairs of pairs... but we still “commit” to the

amount of data when we write down a type.

Lists can have any number of elements:

• [] is the empty list (a value)

• More generally, [v1,v2,...,vn] is a length n list

• If e1 evaluates to v and e2 evaluates to a list [v1,v2,...,vn],

then e1::e2 evaluates to [v,v1,v2,...,vn] (a value).

• null e evaluates to true if and only if e evaluates to []

• If e evaluates to [v1,v2,...,vn], then hd e evaluates to v1 and

tl e evaluates to [v2,...,vn].

– If e evaluates to [], both hd e and tl e raise run-time

exceptions. (Different from type errors; more on this later.)

CSE 341 Spring 2006, Lecture 3 2



List types

A given list’s elements must all have the same type.

If the elements have type t, then the list has type t list. Examples:

int list, (int*int) list, (int list) list.

What are the type rules for ::, null, hd, and tl?

• Possible exceptions do not affect the type.

Hmmm, that does not explain the type of [] ?

• It can have any list type, which is indicated via ’a list.

• That is, we can build a list of any type from [].

• Polymorphic types are 3 weeks ahead of us.

– Teaser: null, hd, and tl are not keywords!

CSE 341 Spring 2006, Lecture 3 3



Recursion again

Functions over lists that depend on all list elements will be recursive:

• What should the answer be for the empty list?

• What should they do for a non-empty list? (In terms of answer for

the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

• When do we create a small (e.g., empty) list?

• How should we build a bigger list out of a smaller one?

CSE 341 Spring 2006, Lecture 3 4



Let bindings

Motivation: Functions without local variables can be poor style and/or

really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Typing rules: Type-check each bi and e in context including previous

bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including

previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

CSE 341 Spring 2006, Lecture 3 5



More than style

Exercise: hand-evaluate bad_max and good_max for lists [1,2]

[1,2,3], and [3,2,1].

Extra Credit Exercise: As a function of n, how long will it take to

calculate

• bad_max([1, 2, ..., n])?

• bad_max([n, n-1, ..., 1])?

CSE 341 Spring 2006, Lecture 3 6



Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them

in the same way:

• How do you create values? (function definition, pair expressions,

empty-list and ::)

• How do you use values? (function application, #1 and #2, null,

hd, and tl)

This (and conditionals) is enough for your homework though:

• andalso and orelse help

• You need options (next slide)

• Soon: much better ways to use pairs and lists (pattern-matching)

CSE 341 Spring 2006, Lecture 3 7



Options

“Options are like lists that can have at most one element.”

• Create a t option with NONE or SOME e where e has type t.

• Use a t option with isSome and valOf

Why not just use (more general) lists? An interesting style trade-off:

• Options better express purpose, enforce invariants on callers,

maybe faster.

• But cannot use functions for lists already written.

CSE 341 Spring 2006, Lecture 3 8


