
CSE 341:
Programming Languages

Spring 2006

Lecture 7 — More on Tail Recursion & Accumulators; Deep Patterns

CSE 341 Spring 2006, Lecture 7 1

Room Change, OH & Travel

Fri. 5/19 only, we will meet in THO 125 (at usual time)

My Office Hour: Fridays at ?

But not this week—out of town. (Guest Lectures by Jonah W & F.)

CSE 341 Spring 2006, Lecture 7 2

Where we are

Two implementation tidbits: call stack & cons cells

Tail recursion avoids call stack overhead

Accumulator-style recursion typically tail-recursive

Today:

• more tail/accumulator examples

• more on pattern-matching as an elegant generalization of variable

binding.

• first-class functions (closures, functions as values)

CSE 341 Spring 2006, Lecture 7 3

Tail calls

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE 341 Spring 2006, Lecture 7 4

So what?

Why does this matter?

• Implementation takes space proportional to depth of function calls

(“call stack” must “remember what to do next”)

• But in functional languages, implementation must ensure tail calls

eliminate the caller’s space

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow.

CSE 341 Spring 2006, Lecture 7 5

A Classic—Reversing a List I

fun rev1(nil) = nil

| rev1(x::xs) = rev1(xs) @ [x];

Run time?

CSE 341 Spring 2006, Lecture 7 6

A Classic—Reversing a List II

fun rev1(nil) = nil

| rev1(x::xs) = rev1(xs) @ [x];

Run time?

O(n2) !

L1 @ L2 must copy L1:

fun append([],l2) = l2

| append(x::xs,l2) = x::append(xs,l2);

So rev1([1,2,...,n]) takes time

1 + 2 + · · · + n = O(n2).

CSE 341 Spring 2006, Lecture 7 7

A Classic—Reversing a List III

fun rev1(nil) = nil

| rev1(x::xs) = rev1(xs) @ [x];

fun rev2 lst =

let fun f (nil, acc) = acc

| f (x::xs, acc) = f(xs,x::acc)

in

f(lst,nil)

end

The standard trick: instead of operating on recursive result, push

operation into the recursive call.

Run time?

CSE 341 Spring 2006, Lecture 7 8

Deep patterns

Patterns are much richer than we have let on. A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• An integer constant...

• ...

CSE 341 Spring 2006, Lecture 7 9

The truth, the whole truth, and nothing but

It’s really:

• val p = e

• fun f p1 = e1 | f p2 = e2 ... | f pn = en

• case e of p1 => e1 | ... | pn => en

Inexhaustive matches may raise exceptions and are bad style.

Example: could write Rope pr or Rope (r1,r2)

Fact: Every ML function takes exactly one argument!

CSE 341 Spring 2006, Lecture 7 10

Some function examples

• fun f1 () = 34

• fun f2 (x,y) = x + y

• fun f3 pr = let val (x,y) = pr in x + y end

Is there any difference to callers between f2 and f3?

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f2 (if e1 then (3,2) else pr)

CSE 341 Spring 2006, Lecture 7 11

