
CSE 341:
Programming Languages

Spring 2006

Lecture 13 — Modules and Abstract Types

CSE 341 Spring 2006, Lecture 13 1



Modules
Large programs benefit from more structure than a list of bindings.

Breaking into parts allows separate reasoning:

• Application-level: in terms of module (in ML, structure) invariants

• Type-checking level: in terms of module types

• Implementation level: in terms of module code-generation

By providing a restricted interface (in ML, a signature), there are more

equivalent implementations in terms of the interface.

Key restrictions:

• Make bindings inaccessible

• Make types abstract (know type exists, but not its definition)

SML has a much fancier module system, but we’ll stick with the basics.

Abstract types are a “top-5” feature of modern languages.

CSE 341 Spring 2006, Lecture 13 2



Structure basics

Syntax: structure Name = struct bindings end

If x is a variable, exception, type, constructor, etc. defined in Name,

the rest of the program refers to it via Name.x

(You can also do open Name, which is often bad style, but convenient

when testing. Alternatively, val x = Name.x for the most used ones.)

So far, this is just namespace management, which is important for

large programs, but not very interesting.

CSE 341 Spring 2006, Lecture 13 3



Signature basics

(For those interested in learning more, we’re doing only opaque

signatures on structure definitions.)

A signature signature BLAH = sig ... end is like a type for a

structure.

• Describes what types a structure provides.

• Describes what values a structure provides (and their types).

Writing structure Name :> BLAH = struct bindings end:

• Ensures Name is a legal implementation of BLAH.

• Ensures code outside of Name assumes nothing more than what

BLAH provides.

Hence signatures are what really enable separate reasoning.

CSE 341 Spring 2006, Lecture 13 4



Signature matching

Is Name a legal implementation of BLAH.

• Clearly it must define everything in BLAH.

• It can define more (unavailable outside of Name).

• BLAH can restrict the type of polymorphic functions.

• BLAH can make types abstract.

In particular, making a datatype abstract hides the constructors, so

clients have no (direct) way to create or access-parts-of values of the

type.

That’s often a good thing.

CSE 341 Spring 2006, Lecture 13 5



Remember

Key tools for modularity/information hiding in ML: structures and

signatures (and functors, which we’re skipping).

A signature that “hides more” makes it easier to:

• Replace the structure implementation without breaking clients.

• Reason about how clients use the structure.

Note: See the extended example code for this lecture for more details...

CSE 341 Spring 2006, Lecture 13 6


