
CSE 341:
Programming Languages

Spring 2006

Lecture 16 — Scheme Intro, Several Binding Forms

CSE 341 Spring 2006, Lecture 16 1



Scheme

• Like ML, functional focus with imperative features

– anonymous functions, function closures, etc.

– but every binding is mutable

• A really minimalist syntax/semantics

– In the LISP tradition

– Current standard is 50 pages

• Dynamically typed

– Less “compile-time” checking

– Accepts more perfectly reasonable programs

• Some “advanced” features for decades

– Programs as data, hygienic macros, continuations

CSE 341 Spring 2006, Lecture 16 2



Which Scheme?

Scheme has a few dialects and many extensions.

We will use “PLT → Pretty Big” for the language and DrScheme as a

convenient environment.

Most of what we do will be “pure Scheme”.

CSE 341 Spring 2006, Lecture 16 3



Scheme syntax

Syntactically, a Scheme term is either an atom (identifier, number,

symbol, string, ...) or a sequence of terms (t1 ... tn).

Note: Scheme used to get (still gets?) “paren bashed”; maybe you’d

prefer XML???

Semantically, identifiers are resolved in an environment and other

atoms are values.

The semantics of a sequence depends on t1 :

• certain character sequences are “special forms”

• otherwise a sequence is a function application (semantics same as

ML — evaluate params, then call function)

CSE 341 Spring 2006, Lecture 16 4



Some special forms

• define

• lambda

• if, cond, and, or

• let, let*, letrec

CSE 341 Spring 2006, Lecture 16 5



Some predefined values

• #t, #f

• (), cons, car, cdr, null?, list

• a “numeric tower” (integer, rational, real, complex, number) with

math operations (e.g., +) defined on all of them

• tons more (strings vs. symbols discussed later)

Note: Prefix and variable-arity help make lots of things functions.

CSE 341 Spring 2006, Lecture 16 6



Parens Matter

Every parenthesis you write has meaning – get used to that fast!

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))); OK

(define (fact n) (if (= n 0) (1) (* n (fact (- n 1)))))

(define (fact n) (if = n 0 (1) (* n (fact (- n 1)))))

(define fact (n) (if (= n 0) 1 (* n (fact (- n 1)))))

(define (fact n) (if (= n 0) 1 (* n fact (- n 1))))

(define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1)))))

CSE 341 Spring 2006, Lecture 16 7



Local bindings

There are 3 forms of local bindings with different semantics:

• let

• let*

• letrec

Also, at front of function bodies, a sequence of definitions is

equivalent to letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:

• people assume non-malicious clients

• implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.

CSE 341 Spring 2006, Lecture 16 8


