
CSE 341:
Programming Languages

Spring 2006

Lecture 17 — Local Binding, Delayed Evaluation, Thunks

CSE 341 Spring 2006, Lecture 17 1



Today

• Local Bindings

• Delaying evaluation: Function bodies evaluated only at application

• Key idioms of delaying evaluation

– Conditionals

– Streams

– Laziness

– Memoization

• In general, evaluation rules defined by language semantics

– Some languages have “lazy” function application!

CSE 341 Spring 2006, Lecture 17 2



Local bindings

There are 3 forms of local bindings with different semantics:

• let

• let*

• letrec

Also, in function bodies, a sequence of definitions is equivalent to

letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:

• people assume non-malicious clients

• implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.

CSE 341 Spring 2006, Lecture 17 3



Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In ML, Scheme, and Java:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent if function argument has no effects/non-termination

CSE 341 Spring 2006, Lecture 17 4



Thunks

One (among several) meanings of “thunk” is just a function taking no

arguments, which works great for delaying evaluation.

• Instead of passing a value directly, pass a thunk (function) which

yields the value when it is called

If thunks are lightweight enough syntactically, why not make if eager?

(Smalltalk does this!)

CSE 341 Spring 2006, Lecture 17 5


