
CSE 341:
Programming Languages

Spring 2006

Lecture 21 — Exceptions & Continuations

CSE 341 Spring 2006, Lecture 21 1

Control Flow

(+ (f 2 3) (- (f 4 (* 5 6)) 7))

Calls: always more to do ... (until the end)

(f 2 3) then (* 5 6) then (f 4 30) then (- whatever 7) then ...

Returns: What next? There’s always somebody waiting ...

e.g. waiting for (f 4 (* 5 6)), we have (λ (x) (+ (f 2 3) (- x 7)))

((λ (x) (+ (f 2 3) (- x 7)))) (f 4 (* 5 6))

Defn: what-to-do-next after the call (f 4 (* 5 6)) is its continuation

Scheme provides access to continuations!

CSE 341 Spring 2006, Lecture 21 2

Exceptions in Scheme

Recall exceptions in Java, ML: Transfer control to nearest dynamically

scoped exception handler (i.e., nearest on “call stack”).

Transfer control: Forget what you’re doing. Result of entire program is

now result of the handle (catch) in the “call stack” that existed when

the handler was reached.

Scheme has a more powerful concept that can be a little less

convenient for exceptions:

• You explicitly indicate what “handler” (continuation) to transfer

control to.

• You do the transfer via a function application (that does not have

function-application semantics)

• The continuation does not even have to be on the “call stack”

when it’s transferred to!

CSE 341 Spring 2006, Lecture 21 3

Continuations for exceptions

Plan:

• Using continuations for exceptions (More details later, time

permitting)

Syntax:

• (let/cc k e1) : in e1, bind k to “current continuation” (basically,

the point immediately after the let/cc) then eval e1

• (k e2): “invoke” continuation bound to k, passing value e2, in

lieu of the value of e1 (now aborted)

Exception idiom:

• Instead of handler, use let/cc

• Pass an appropriate function that invokes k to any function that

needs to “raise”

CSE 341 Spring 2006, Lecture 21 4

