
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 10— Mutual Recursion, Equivalence and Syntactic Sugar

CSE341 Winter 2006, Lecture 10 1



'

&

$

%

Mutual Recursion

We haven’t yet seen how multiple functions can recursively call each

other? (Why can’t we do this with what we have?)

ML uses the keyword and to provide different scope rules. Example:

fun even i = if i=0 then true else odd (i-1)

and odd i = if i=0 then false else even (i-1)

Roughly extends the binding form for functions from fun f1 x1 = e1

to fun f1 x1 = e1 and f2 x2 = e2 and ... and fn xn = en.

Actually, you can have val bindings too, but bindings being defined

are in scope only inside function bodies. (Why?)

Syntax gotcha: Easy to forget that you write and fi xi = ei, not

and fun fi xi = ei.

CSE341 Winter 2006, Lecture 10 2



'

&

$

%

Mutual Recursion Idioms
1. Encode a state machine (see product_sign example)

• Sometimes easier to understand than explicit state values.

2. Process mutually recursive types, example:

datatype webtext = Empty

| Link of webpage * string * webtext

| Word of string * webtext

and webpage = Found of string * webtext

| Unfound of string

A function “crawl for word” is inherently mutually recursive. (You

could make a datatype for “webtext or webpage”, but that’s ugly.)

Problem: the Web has cycles, which (sigh) is a common need for

mutation in ML.

Unproblem: When crawling, we don’t want cycles (use Unfound if

we have seen the page before).

CSE341 Winter 2006, Lecture 10 3



'

&

$

%

Where are We

• We have covered enough basics to focus more on concepts now

• Before Scheme: Equivalence, parametric polymorphism, type

inference, modules/abstract-types

• Midterm exam in a couple of weeks (more info later)

CSE341 Winter 2006, Lecture 10 4



'

&

$

%

Equivalence

“Equivalence” is a fundamental programming concept

• Code maintenance / backward-compatibility

• Program verification

• Program optimization

• Abstraction and strong interfaces

But what does it mean for an expression (or program) e1 to be

“equivalent” to expression e2?

CSE341 Winter 2006, Lecture 10 5



'

&

$

%

First equivalence notion

Context (i.e., “where equivalent”)

• Given where e1 occurs in a program e, replacing e1 with e2
makes a program e′ equivalent to e

• At any point in any program, replacing e1 with e2 makes an

equivalent program.

The latter (contextual equivalence) is much more interesting.

For the former, the body of an unused function body is equivalent to

everything (that typechecks).

CSE341 Winter 2006, Lecture 10 6



'

&

$

%

Second equivalence notion

“how equivalent”

• “partial”: e and e′ are equivalent if they input and output the

same data (any limits on input?)

• “total”: partial plus e and e′ have the same termination behavior

• efficiency: e and e′ are totally equivalent and one never takes

more than (for example) c times longer than the other (or uses

much more space or ...)

• syntactic notions: e and e′ differ only in whitespace and

comments (for example)

Key notion: what is observable? (memory, clock, REP-loop,

file-system, ...)

CSE341 Winter 2006, Lecture 10 7



'

&

$

%

Accounting for “Effects”

Consider whether fn x => e1 and fn x => e2 are totally

contextually equivalent.

Is this enough? For all environments, e1 terminates and evaluates to v

under the environments if and only if e2 terminates and evaluates to v

under the environment.

We must also consider any effects the function may have.

Purely functional languages have fewer/none, but ML is not purely

functional.

In real languages, contextual equivalence usually requires many things.

Nonetheless, “equivalence” usually means total contextual equivalence

for practical purposes (optimization, reasoning about correctness, etc.).

CSE341 Winter 2006, Lecture 10 8



'

&

$

%

Syntactic Sugar

When all expressions using one construct are totally equivalent to

another more primitive construct, we say the former is “syntactic

sugar”.

• Makes language definition easier

• Makes language implementation easier

Examples:

• e1 andalso e2 (define as a conditional)

• if e1 then e2 else e3 (define as a case)

• fun f x y = e (define with an anonymous function)

CSE341 Winter 2006, Lecture 10 9



'

&

$

%

More sugar

#1 e is just let val (x,...) = e in x end

If we ignore types, then we have even more sugar:

let val p = e1 in e2 end is just (fn p => e2) e1.

In fact, if we let every program type-check (or just use one big

datatype), then a language with just functions and function

application is as powerful as ML or Java (in the Turing Tarpit sense).

This language is called “lambda calculus” – we’ll learn a bit more

about it later.

CSE341 Winter 2006, Lecture 10 10



'

&

$

%

Equivalences for Functions

While sugar defines one construct in terms of another, there are also

important notions of meaning-preserving changes involving functions

and bound variables.

They’re so important that a goal of language design is that a language

supports them.

But the correct definitions are subtle.

First example: systematic renaming

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

CSE341 Winter 2006, Lecture 10 11



'

&

$

%

Systematic renaming requires care

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

What if e1 is y?

What if e1 is fn x => x?

Need caveats: fn x => e1 is equivalent to fn y => e2 where e2 is

e1 with every free x replaced by y and y is not free in e1.

Note: We can provide a very precise recursive (meta-)definition of free

variables in an expression.

Next: Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every

x replaced by e2?

CSE341 Winter 2006, Lecture 10 12



'

&

$

%

Argument Substitution

Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every x

replaced by e2?

• Every free x (of course).

• A free variable in e2 must not be bound at an occurrence of x.

(Called “capture”.)

– Always satisfiable by renaming bound variables.

• Evaluating e2 must have no effects (printing, exceptions,

infinite-loop, etc.)

– Closely tied to the rule that arguments are evaluated to values

before function application. (Not true for all languages)

– In ML, many expressions have no such effects (x, #foo x, ...);

much fewer in Java.

• Efficiency? Could be faster or slower. (Why?)

CSE341 Winter 2006, Lecture 10 13



'

&

$

%

Unnecessary Function Wrapping

A common source of bad style for beginners

Is e1 equivalent to fn x => e1 x?

Sure, provided:

• e1 is effect-free

• x does not occur free in e1

Example:

List.map (fn x => SOME x) lst

List.map SOME lst

CSE341 Winter 2006, Lecture 10 14



'

&

$

%

Summary

We breezed through some core programming-language facts and

design goals:

• Definition of equivalence depends on observable behavior

• Syntactic sugar “makes a big language smaller” by defining

constructs in terms of equivalence

• Notion of free and bound variables crucial to understanding

function equivalence.

• Three common forms of function equivalence:

– Systematic Renaming

– Argument Substitution

– Unnecessary Function Wrapping

CSE341 Winter 2006, Lecture 10 15


