
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 16— define-struct, let/cc for exceptions

CSE341 Winter 2006, Lecture 16 1



'

&

$

%

Data in Scheme

Recall ML’s approach to each-of, one-of, and self-referential types.

Pure Scheme’s approach:

• There is One Big Datatype with built-in predicates.

• Use pairs (lists) for each-of types.

• Primitives implicitly raise errors for “wrong variant”

• Use helper functions like caddr and your own.

We’ll discuss advantages/disadvantages next week.

CSE341 Winter 2006, Lecture 16 2



'

&

$

%

define-struct
MzScheme extends Scheme with define-struct, e.g.:

(define-struct square (x y))

(define-struct piece (squares))

Semantics:

• Binds constructors (make-square, make-piece) that take

arguments and make values.

• Binds predicates (square?, piece?) that take one argument and

return #t only for values built from the right constructor.

• Binds accessors (square-x, square-y, piece-squares) that

take one argument, return the appropriate field, and call error for

values not built from the right constructor.

• Binds mutators (set-square-x!, set-square-y!,

set-piece-squares!).

CSE341 Winter 2006, Lecture 16 3



'

&

$

%

define-struct is special

define-struct creates a new variant for the One Big Datatype.

Claim: define-struct is not a function.

Claim: define-struct is not a macro.

It could be a macro except for one key bit of its semantics: Values

built from the constructor cause every other predicate (including all

built-in ones) to return #f.

Advantage: abstraction

Disadvantage: Can’t write “generic” code that has a case for every

possible variant in every Scheme program.

CSE341 Winter 2006, Lecture 16 4



'

&

$

%

Idiom for ML datatypes

Instead of a datatype with n constructors, you just use

define-struct n times.

That “these n go together” is just convention.

Instead of case, you have a cond with n predicates and one

“catch-all” error case.

CSE341 Winter 2006, Lecture 16 5



'

&

$

%

Exceptions in Scheme

Recall exceptions in Java, ML: Transfer control to nearest dynamically

scoped exception handler (i.e., nearest on “call stack”).

Transfer control: Forget what you’re doing. Result of entire program is

now result of the handle (catch) in the “call stack” that existed when

the handler was reached.

Scheme has a more powerful concept that can be a little less

convenient for exceptions:

• You explicitly indicate what “handler” (continuation) to transfer

control to.

• You do the transfer via a function application (that does not have

function-application semantics)

• The continuation does not even have to be on the “call stack”

when it’s transferred to!

CSE341 Winter 2006, Lecture 16 6



'

&

$

%

Continuations for exceptions

Plan:

• Show how to use continuations for exceptions

• Explain continuation-semantics “from scratch” (later)

• Hint at some advanced uses (later)

Syntax:

(let/cc k e) ; bind k to ‘‘current continuation’’

(k e) ; ‘‘invoke’’ continuation bound to k

Exception idiom:

• Instead of handler, use let/cc

• Pass an appropriate function that invokes k to any function that

needs to “raise”

CSE341 Winter 2006, Lecture 16 7


