
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 25— Named Types; Class vs. Types; Interfaces

CSE341 Winter 2006, Lecture 25 1



'

&

$

%

Named Types

In Java/C++/C#/..., types don’t look like [t10 m1:(t11,...),

..., tn0 mn(tn1,...)].

Instead they look like C where C is a class or interface.

But everything we just learned about subtyping still applies!

Yet the only subtyping is (the transitive closure of) declared subtypes

(e.g., class C extends D implements I,J).

Given types D, I, and J, ensure objects produced by class C’s

constructors can have subtypes (more methods, contra/co, etc.)

CSE341 Winter 2006, Lecture 25 2



'

&

$

%

Named vs. Unnamed

For preventing “message not understood”, unnamed (“structural”)

types worked fine.

But many languages have named (“nominal”) types.

Which is better is a tired old argument, but fortunately it has some

interesting intellectual points (unlike emacs vs. vi).

First, frame the question more narrowly: Should subtyping be nominal

or structural? (Named types don’t preclude structural subtyping, e.g.

casting between two otherwise-unrelated interfaces.)

CSE341 Winter 2006, Lecture 25 3



'

&

$

%

Some Fair Points
For structural subtyping:

• Allows more code reuse, while remaining sound.

• Does not require refactoring or adding “implements clauses”

later when you discover you could share some implementation.

• A simpler system (type names are just an abbreviation and

convenient way to write recursive types)

For nominal subtyping:

• Reject more code, which catches bugs and treating unmeaningful

method-name clashes as significant.

• Confusion with classes saves keystrokes and “doing everything

twice”?

• Fewer subtypes makes type-checking (??) and efficient

code-generation easier.

CSE341 Winter 2006, Lecture 25 4



'

&

$

%

The Grand Confusion

For convenience, many languages confuse classes and types:

• C is a class and a type

• If C extends D, then:

– instances of the class C inherit from the class D

– expressions of type C can be subsumed to have type D

Do you usually want this confusion? Probably.

Do you always want “subclass implies subtype”?

• No: Recall distTo for Point and 3DPoint.

Do you always want “subtype implies subclass”?

• No: Two classes with display methods may have no inheritance

relationship.

CSE341 Winter 2006, Lecture 25 5



'

&

$

%

Untangling Classes and Types

• Classes define object behavior; subclassing inherits behavior

• Subtyping defines substitutability

• You often want subclasses to be subtypes; most languages give

you no choice.

Now some other common features make more sense:

• “Abstract” methods:

– Expand the supertype without providing behavior to subclass

– Superclass does not implement behavior, so no constructors

allowed (an additional static check because the class is

abstract)

– The static-check is the only fundamental justification (trivial to

provide a method that raises an exception).

• Interfaces...

CSE341 Winter 2006, Lecture 25 6



'

&

$

%

Interfaces

A Java interface is just a (named) object type.

By implementing an interface, you get subsumption but no behavior.

• Same thing with “multiple inheritance” when n − 1 superclasses

have all abstract methods. Should be called “multiple

subsumance”, but subsumance is not a word. :)

• None of the semantic issues we previously discussed with multiple

inheritance arise with interfaces.

• But there are issues we didn’t discuss before because they’re

about typing, and we’ll skip now:

– Lack of least supertypes

– Ambiguity if “subsumption is not a run-time no-op” (coercive)

CSE341 Winter 2006, Lecture 25 7


