So far...

map : given F and list $\left[a_{1}, a_{2} \ldots a_{n}\right]$, produces $\left[F\left(a_{1}\right), F\left(a_{2}\right), \ldots F\left(a_{3}\right)\right]$
reduce : given F and list $\left[a_{1}, a_{2} \ldots a_{n}\right]$, produces $F\left(a_{1}, F\left(a_{2}, F\left(\ldots, F\left(a_{n-1}, a_{n}\right) \ldots\right)\right)\right)$
filter: given predicate P and list $\left[a_{1}, a_{2} \ldots a_{n}\right]$, produces elements in the given list that satisfy predicate P.

```
fun map (F,nil) = nil
    | map (F,x::xs) = F(x)::map(F,xs)
```

exception EmptyList;
fun reduce (F, nil) = raise EmptyList
| reduce($\mathrm{F}, \mathrm{[a]}$) = a
| reduce($\mathrm{F}, \mathrm{x}:: \mathrm{xs}$) $=\mathrm{F}(\mathrm{x}, \mathrm{reduce}(\mathrm{F}, \mathrm{xs})$);
fun filter (P, nil) = nil
| filter (P, x::xs) =
if $P(x)$ then $x:$ filter (P, xs)
else filter (P,xs)

Question: what is the type of these functions?

Mini-exercise:

$$
\begin{equation*}
\prod_{i=1}^{5} \frac{x}{i} \tag{1}
\end{equation*}
$$

hint: use map and reduce

A relaxing exercise to wake you up...

Question: Write a function tabulate that as arguments an initial value a, an increment delta, a number of points n, and a function F of type (real \rightarrow real).

Return a list of two-tuples $(x, F(x))$ where x $=a, a+$ delta $a, a+2 *$ delta $a, \ldots, a+(n-1) *$ delta

Side Note 1: Try not using parentheses on your function arguments. ex: fun F x instead of fun $F(x)$.

Side Note 2: What will the type be?
fun tabulate a delta n F = let
fun t i result =
let
val $\mathrm{x}=\mathrm{a}+\mathrm{real}(\mathrm{i}) *$ delta
in
if $i=n$
then result
else $t(i+1)$ (result@[(x, $F(x))])$
end
in
t 0 []
end

Calculus

No, you're not in the wrong classroom

Derivative

The derivative of a function f with respect to x is denoted $f^{\prime}(x)$ or $\frac{d f}{d x}$, which is defined as

$$
f^{\prime}(x) \frac{f(x+h)-f(x)}{h}
$$

or more symmetrically as

$$
f^{\prime}(x) \frac{f(x+h)-f(x-h)}{2 h}
$$

To do numerical differentiation, simply pick some very small h, say, $1 E-6$.

Some nostalgic examples:

$$
\begin{aligned}
& \frac{d}{d x} x^{n} \\
& \frac{d}{d x} \ln x \\
& \frac{d}{d x} \sin x \\
& \frac{d}{d x} e^{x}
\end{aligned}
$$

Integral
Definite integral: An integral $\int_{a}^{b} f(x) d x$ with upper and lower limits.

Indefinite integral (antiderivative): An integral of the form $\int f(z) d z$, that is, without upper and lower limits.

There are tons of ways to do numerical integration (and you probably know better than I do), but we'll stick to the simplest one (and the only way I can understand without re-reading Calculus), which is the trapezoidal rule

$$
\int_{a}^{b} f(x) d x \approx(b-a) \frac{f(a)+f(b)}{2}
$$

For a more accurate approximation, we can break up the interval $[a, b]$ into n subintervals

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{n}\left(\frac{f(a)+f(b)}{2}+\sum_{k=1}^{n-1} f\left(a+k \frac{b-a}{n}\right)\right)
$$

