
CSE 341:
Programming Languages

Spring 2007

Lecture 4 — user-defined types

CSE 341 Spring 2007, Lecture 4 1



Where are we

• Features so far: functions, tuples, lists, options, local bindings

• Concepts so far: syntax vs. semantics, environments

• Today’s features: record types, datatypes, pattern-matching

• Today’s concepts: types, constructors/deconstructors,

case-coverage

CSE 341 Spring 2007, Lecture 4 2



Base types and compound types

Languages typically provide a small number of “built-in” types and

ways to build compound types out of simpler ones:

• Base types examples: int, bool

• Type builder examples: tuples, lists, records

Base types clutter a language definition? better to make them libraries

when possible?

• ML does this to a remarkable extent (e.g., we will soon define

away bool and conditionals)

Good to let programmers bind types to type names, just like we bind

values to variables.

CSE 341 Spring 2007, Lecture 4 3



Compound-type flavors

Conceptually, just a few ways to build compound types:

1. “Each-of”: A t contains a t1 and a t2

2. “One-of”: A t contains a t1 or a t2

3. “Self-reference”: The definition of t may refer to t

Examples:

• int * bool

• int option

• int list

Fact: A lot of data can be described this way.

Convenient to think of as trees.

(optional) jargon: Product types, sum types, recursive types

CSE 341 Spring 2007, Lecture 4 4



User-defined types

There are many reasons to define your own types:

1. Using a tuple with 12 fields is incomprehensible

2. Writing down large types is unpleasant, error-prone; computers

can help

3. Large programs can use abstract types to be robust to change

• A couple weeks ahead

4. So the language doesn’t have to “build in” lists and options and

. . . that aren’t always needed

CSE 341 Spring 2007, Lecture 4 5



Datatype

One-of types are less similar across languages

• We’ll discuss OO’s approach to one-of in a few weeks

In ML, we use make a new type with a datatype binding, e.g.:

datatype exp = Const of int

| Negate of exp

| Add of exp * exp

| Mul of exp * exp

Semantics: Extend the environment with four constructors (in part,

functions/constants that produce values of type exp)

val e = Add(Const(42),Negate(Mul(Const(7),Const(6))))

So we have a way to build them... what’s missing?

CSE 341 Spring 2007, Lecture 4 6



The old way

For lists, we had a way to:

• Test which variant a value was (null)

• Extract the values from value-carrying variants (hd/tl)

– Makes no sense if you have the wrong variant

What would this look like for exp?

CSE 341 Spring 2007, Lecture 4 7



The new way

Rather than add variant-tests and variant-deconstructors, ML has a

case expression that uses pattern-matching.

In its simplest form, case has one pattern for each constructor in a

dataype and binds one variable for each value carried. Example:

fun eval e =

case e of

Const i => i

| Negate e2 => ~ (eval e2)

| Add(e1,e2) => (eval e1) + (eval e2)

| Mul(e1,e2) => (eval e1) * (eval e2)

val z = eval Add(Const(42),Negate(Mul(Const(7),Const(6))))

What are the typing rules?

What are the evaluation rules?

CSE 341 Spring 2007, Lecture 4 8



Type-checking case

In addition to binding local variables and requiring branches to have

the same type, the typing rules for case prevent some run-time errors:

• Exhaustiveness: No test can “fail” (a warning)

• Redundancy: No test can be “impossible” (an error)

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

(deconstruct)

• Powerful enough to define our own tests and deconstructors

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment

• Can use it for any type (later)

• Can have deep patterns (later)

CSE 341 Spring 2007, Lecture 4 9


