
CSE 341:
Programming Languages

Spring 2007

Lecture 12 — Type Inference, Parametric Polymorphism, Type

Constructors

CSE 341 Spring 2007, Lecture 12 1

Today

• We have learned an interesting subset of the ML expression

language

• But we have been really informal about some aspects of the type

system:

– Type inference (what types do bindings implicitly have)

– Type variables (what do ’a and ’b really mean)

– Type constructors (why is int list a type but not list)

• Note: Type inference and parametric polymorphism are separate

concepts that end up intertwined in ML. A different language

could have one or the other.

CSE 341 Spring 2007, Lecture 12 2

Type Inference

Some languages are untyped or dynamically typed.

ML is statically typed ; every binding has one type, determined during

type-checking (compile-time).

ML is implicitly typed ; programmers rarely need to write the types of

bindings.

The type-inference question: Given a program without explicit types,

produce types for all bindings such that the program type-checks, or

reject (only) if it is impossible.

Whether type inference is easy, hard, or impossible depends on details

of the type system: Making it more or less powerful (i.e., more

programs typecheck) may make inference easier or harder.

CSE 341 Spring 2007, Lecture 12 3

ML Type Inference

• Determine types of bindings in order (earlier first) (except for

mutual recursion)

• For each val or fun binding, analyze the binding to determine

necessary facts about its type.

• Afterward, use type variables (e.g., ’a) for any unconstrained

types in function arguments or results.

• Some extra details for type variables and references we’ll mention

later.

Amazing fact: For the ML type system, “going in order” this way

never causes unnecessary rejection.

CSE 341 Spring 2007, Lecture 12 4

Example 1

fun f x =

let val (y,z) = x in

(Real.abs y) + z

end

CSE 341 Spring 2007, Lecture 12 5

Example 2

fun sum lst =

case lst of

[] => 0

| hd::tl => hd + (sum tl)

CSE 341 Spring 2007, Lecture 12 6

Example 3

fun compose (f,g,x) = f (g x)

CSE 341 Spring 2007, Lecture 12 7

Comments on ML type inference

• If we had subtyping, the “equality constraints” we generated

would be unnecessarily restrictive.

• If we did not have type variables, we would not be able to give a

type to compose until we saw how it was used.

– But type variables are useful regardless of inference.

• Inference is why the following aren’t really equivalent:

– let val x = e1 in e2 end

– (fn x => e2) e1

E.g., let’s try e2 = (x 0, x "foo") and something simple for e1

like fn y => y:

– let val x = (fn y => y) in (x 0, x "foo") end

– (fn x => (x 0, x "foo")) (fn y => y)

The latter gives a type error ...

CSE 341 Spring 2007, Lecture 12 8

Parametric polymorphism

Fancy words for “forall-types”. Late add-on to Java, C#, VB, etc.

Sometimes called generics. A bit like C++ templates

In principle, just two new kinds of types:

tv ::= ’a | ’b | ...

t ::= int | string | bool | t1->t2 | {l1:t1, ..., ln:tn}

| dtname | tv | forall ’tv. t

Given an expression of type forall ’tv. t, we can instantiate it at

type t2 to get an expression of type “t with ’tv replaced by t2”

Example: We can instantiate

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

with string for ’a and int->int for ’b to get

(string * (int->int)) -> ((int->int) * string)

CSE 341 Spring 2007, Lecture 12 9

ML-style polymorphism

The ML type system is actually more restrictive:

• “forall” must appear “all the way on the outside-left”

• So it’s implicit; no way to write the words “for all”

Example: (’a * ’b) -> (’b * ’a) means

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

Non-example: There’s no way to have a type like

int -> (forall ’a. ’a -> int)

CSE 341 Spring 2007, Lecture 12 10

Versus Subtyping

Compare

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with

class Pair { Object x; Object y; ... }

Pair swap(Pair pr) { return new Pair(pr.y, pr.x); }

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast result

• Callee cannot return a pair of any two objects.

CSE 341 Spring 2007, Lecture 12 11

Containers

Parametric polymorphism (forall types) are also the right thing for

containers (lists, sets, hashtables, etc.) where elements have the same

type.

Example: ML lists

:: : (’a * (’a list)) -> ’a list (* infix is syntax *)

map : ((’a -> ’b) * (’a list)) -> ’b list

sum : int list -> int

fold : (’a * ’b -> ’b) -> ’b -> (’a list) -> ’b

list is a type constructor, not a type; if t is a type, then t list is a

type.

Again, with original Java containers, you just had list of Object & a

lot of casts...

CSE 341 Spring 2007, Lecture 12 12

User-defined type constructors

Language-design: don’t provide a fixed set of a useful thing.

Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype ’a rope = Empty

| Cons of ’a * (’a rope)

| Rope of (’a rope) * (’a rope)

You can have multiple type-parameters (not shown here).

And now, finally, everything about lists is syntactic sugar!

CSE 341 Spring 2007, Lecture 12 13

