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Today

• We have learned an interesting subset of the ML expression

language

• But we have been really informal about some aspects of the type

system:

– Type inference (what types do bindings implicitly have)

– Type variables (what do ’a and ’b really mean)

– Type constructors (why is int list a type but not list)

• Note: Type inference and parametric polymorphism are separate

concepts that end up intertwined in ML. A different language

could have one or the other.
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Type Inference

Some languages are untyped or dynamically typed.

ML is statically typed ; every binding has one type, determined during

type-checking (compile-time).

ML is implicitly typed ; programmers rarely need to write the types of

bindings.

The type-inference question: Given a program without explicit types,

produce types for all bindings such that the program type-checks, or

reject (only) if it is impossible.

Whether type inference is easy, hard, or impossible depends on details

of the type system: Making it more or less powerful (i.e., more

programs typecheck) may make inference easier or harder.
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ML Type Inference

• Determine types of bindings in order (earlier first) (except for

mutual recursion)

• For each val or fun binding, analyze the binding to determine

necessary facts about its type.

• Afterward, use type variables (e.g., ’a) for any unconstrained

types in function arguments or results.

• Some extra details for type variables and references we’ll mention

later.

Amazing fact: For the ML type system, “going in order” this way

never causes unnecessary rejection.
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Example 1

fun f x =

let val (y,z) = x in

(Real.abs y) + z

end
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Example 2

fun sum lst =

case lst of

[] => 0

| hd::tl => hd + (sum tl)
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Example 3

fun compose (f,g,x) = f (g x)
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Comments on ML type inference

• If we had subtyping, the “equality constraints” we generated

would be unnecessarily restrictive.

• If we did not have type variables, we would not be able to give a

type to compose until we saw how it was used.

– But type variables are useful regardless of inference.

• Inference is why the following aren’t really equivalent:

– let val x = e1 in e2 end

– (fn x => e2) e1

E.g., let’s try e2 = (x 0, x "foo") and something simple for e1

like fn y => y:

– let val x = (fn y => y) in (x 0, x "foo") end

– (fn x => (x 0, x "foo")) (fn y => y)

The latter gives a type error ...
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Parametric polymorphism

Fancy words for “forall-types”. Late add-on to Java, C#, VB, etc.

Sometimes called generics. A bit like C++ templates

In principle, just two new kinds of types:

tv ::= ’a | ’b | ...

t ::= int | string | bool | t1->t2 | {l1:t1, ..., ln:tn}

| dtname | tv | forall ’tv. t

Given an expression of type forall ’tv. t, we can instantiate it at

type t2 to get an expression of type “t with ’tv replaced by t2”

Example: We can instantiate

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

with string for ’a and int->int for ’b to get

(string * (int->int)) -> ((int->int) * string)
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ML-style polymorphism

The ML type system is actually more restrictive:

• “forall” must appear “all the way on the outside-left”

• So it’s implicit; no way to write the words “for all”

Example: (’a * ’b) -> (’b * ’a) means

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

Non-example: There’s no way to have a type like

int -> (forall ’a. ’a -> int)
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Versus Subtyping

Compare

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with

class Pair { Object x; Object y; ... }

Pair swap(Pair pr) { return new Pair(pr.y, pr.x); }

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast result

• Callee cannot return a pair of any two objects.
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Containers

Parametric polymorphism (forall types) are also the right thing for

containers (lists, sets, hashtables, etc.) where elements have the same

type.

Example: ML lists

:: : (’a * (’a list)) -> ’a list (* infix is syntax *)

map : ((’a -> ’b) * (’a list)) -> ’b list

sum : int list -> int

fold : (’a * ’b -> ’b) -> ’b -> (’a list) -> ’b

list is a type constructor, not a type; if t is a type, then t list is a

type.

Again, with original Java containers, you just had list of Object & a

lot of casts...
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User-defined type constructors

Language-design: don’t provide a fixed set of a useful thing.

Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype ’a rope = Empty

| Cons of ’a * (’a rope)

| Rope of (’a rope) * (’a rope)

You can have multiple type-parameters (not shown here).

And now, finally, everything about lists is syntactic sugar!
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