
CSE 341:
Programming Languages

Spring 2007

Lecture 29 — Automatic Memory Management

What Every CS Student Should Know About Garbage Collection

CSE 341 Spring 2007, Lecture 29 1



From The Beginning...

• What is memory management and why do we need it?

• What errors does safe memory management prevent?

• What is “drag” and why is it undesirable?

• What safe approximation does GC make?

• What are some basic GC algorithms?

• Why are real GCs so much more complicated?

CSE 341 Spring 2007, Lecture 29 2



Why Memory Management?

ML constructors, Scheme’s cons, Smalltalk/Java’s new, defining

nested functions/blocks create new objects.

Most objects are short-lived.

May run out of space if we do not reuse parts of memory.

Even if not, programs using compact space run faster.

CSE 341 Spring 2007, Lecture 29 3



The manual way (e.g., C/C++)

• Reclaim space for local variables when execution leaves the

function/block. (Callers cannot access these stack “objects”.)

• Reclaim other space (heap objects) when the programmer says to,

e.g. free(x) or delete(x).

• Problems

– free/delete is tedious

– and error-prone

– and sometimes cuts across natural module boundaries

(Joe creates it, Harry & Sally both use it, who frees it?)

CSE 341 Spring 2007, Lecture 29 4



What Could Go Wrong?

Memory management is difficult because we want both:

• No accesses to reclaimed objects (i.e., no “dangling-pointer

dereferences”): If the space has been reused for another object,

this will lead to crashes or silent data corruptions. Very expensive

to detect at run-time.

Examples: dereference after free, or returning a reference to a

local variable.

• No memory leaks: If we do not reclaim enough, we may occupy

much more space than we need.

Both typically very hard to debug.

CSE 341 Spring 2007, Lecture 29 5



Memory Leaks

With manual memory management, a “memory leak” means

“unreachable heap objects that have not been reclaimed”.

After all, they will never be reclaimed (no way to pass them to free).

But as we’ll see, a garbage-collector reclaims unreachable objects, so

many people say “a language with GC cannot have memory leaks”.

While technically true with the right definitions, it’s misleading:

Example: Store a huge data structure in a static field of a Java class.

Never access that field again.

This is the extreme case of drag : The time between an object’s last

access and its reclamation.

CSE 341 Spring 2007, Lecture 29 6



Space Leaks in GC’d Languages

GC won’t reclaim a reachable object (with some exceptions, if your

compiler does some fancy analysis/optimization).

Options for the programmer:

• Ignore the problem; it “usually” doesn’t come up.

• Set fields to null when you’re done with them. (Back to manual

management, but at least you get a NullPointerException in

place of silent dangling dereferences)

• Take care not to let “permanent” data grow too big.

(Potentially bad example: memoization tables.)

CSE 341 Spring 2007, Lecture 29 7



Reachability - The Key to Garbage

Whether specified or not, most languages have a notion of reachability :

• All Roots are reachable:

– Globals (top-level bindings / classes / static fields) are roots

– Local variables from function/method calls that haven’t

returned (i.e., stack contents) are roots

• Any object referred to by something reachable is reachable.

• Nothing else is reachable.

Informally, it’s easy to imagine an algorithm to find what’s reachable:

• Examine all roots by crawling stack & globals (next slide)

• Graph Reachability: Recursively follow all fields of reachable

objects, without revisiting objects already seen (cycles &

cross-links). E.g., BFS or DFS. (next2 slide)

CSE 341 Spring 2007, Lecture 29 8



Crawling amidst the garbage is a dirty business

In practice, crawling the stack and finding fields requires intimate

knowledge of a language implementation, and possibly deep

integration with the compiler.

• Where’s the top of the stack?

• Which procedure is that?

• What are its locals and where are they?

• Who called it? What’s the layout of its stack frame? ...

• Given a heap object, what’s its type? How big is it? Which of its

fields are other heap pointers? ... (E.g., use “header words,” such

as class pointers, to locate the fields pointing to other objects.)

CSE 341 Spring 2007, Lecture 29 9



Graph Reachability: BFS/DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

CSE 341 Spring 2007, Lecture 29 10



How’s the magic work?

Production-quality GC’s are very sophisticated and use lots of tricks to:

• run fast

• make allocation fast (e.g., make contiguous areas of memory

available)

• minimize fragmentation

• maximize locality

• reduce “pause times.” Why?

– Soft deadlines: Humans don’t like “temporary freezes”

– Hard deadlines: “Your red-button-push is important to us.

Please be patient while we collect some garbage, then I’ll begin

the emergency reactor core shut-down you requested.”

Today: sketch the simplest versions of four basic approaches.

CSE 341 Spring 2007, Lecture 29 11



Approach 0: Reference Counts

Every object holds a reference count = total number of pointers to

that object

Ref count incremented/decremented on every change to any pointer

Garbage when ref count hits 0

Pro:

• Fast & simple

Con:

• Requires discipline and/or compiler support to maintain counts

• Fails for circular structures

CSE 341 Spring 2007, Lecture 29 12



Approach 1: (Semispace) Copying Collector

• Divide memory into two equal-size contiguous pieces.

• Allocate objects in one space until it’s full (easy and fast).

• We now have a full from-space and an empty to-space.

• Copy the reachable objects into to-space.

• Restart the “real program” (called the mutator), allocating into

the partially full to-space.

• Continue until to-space is full.

• The old from-space is empty—it will be the new to-space.

CSE 341 Spring 2007, Lecture 29 13



Important Details

We skimmed over two very important details!

• We moved objects; that means we must change any references to

those objects too!

• Our recursive procedure for copying reachable objects better not

use space we don’t have! (GC during GC not an option.)

Solutions:

• A Cheney queue: Two pointers into to-space all we need to keep

track of what needs to be recursively traversed. (BFS)

• Forwarding pointers: We can use space in the old objects to record

where they moved to. (Use to update fields and not follow cycles.)

CSE 341 Spring 2007, Lecture 29 14



Approach 2: Mark-and-Sweep

• Allocate objects until you (almost) fill the space you have.

• Mark: Starting from the roots, find all reachable objects. Mark

them (set a bit in the header word). Don’t revisit already-marked

objects.

• Sweep: Scan through memory.

– If an object is unmarked, reclaim it.

– Else (object is marked), unmark it (anticipating next GC).

CSE 341 Spring 2007, Lecture 29 15



Another Set Of Important Details

• Recall the Dirty Business slide—during sweep, need to be able to

find objects in memory, i.e., not by following pointers.

“for(loc = min; loc < max; loc++) {...}”

• Our recursive procedure for marking reachable objects better not

use space we don’t have! (And a Cheney queue won’t work.)

– Use auxiliary space to remember stack or queue of

“unprocessed objects” and pull clever tricks if this space fills.

– Or use really clever “Deutsch-Schorr-Waite” algorithm to

“reverse” pointers temporarily while recurring.

• Allocation isn’t nearly as simple:

– We need to find some space big enough for the object.

– Can make “free lists”, but want to “segregate them by size,”

perhaps merging adjacent free elements.

CSE 341 Spring 2007, Lecture 29 16



Some Pros and Cons

• No objects move, no fields get changed.

• We don’t need 2x more space

On the other hand:

• In practice, if more than about 2/3 of memory ends up marked,

you’ll GC too often (slow program).

• doubling size of virtual memory is usually cheap

• Fragmentation can lead to memory exhaustion before a copying

collector would.

• Locality may also suffer

CSE 341 Spring 2007, Lecture 29 17



Approach 3: Generational collectors

Distribution of object lifetimes is far from uniform. By various

estimates, 80+% of objects become garbage very quickly, while the

long-lived objects constitute the bulk of the non-garbage.

E.g., copying collectors copy the same objects again and again.

An idea: Have two or more separate areas for young, old, antique ...

objects. Use separate semi-space collectors in each area. Collect young

space most frequently.

Key problem: need to find/update all old → young pointers when

young is collected/compacted, without crawling old space every time.

Solutions: use an indirection table and/or “write barriers” (trap all

assignments to pointers in old objects to check whether they point to

new ones).

CSE 341 Spring 2007, Lecture 29 18



To Learn More

An excellent survey paper:

Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In

International Workshop on Memory Management, St. Malo, France,

September 1992

Available at:

http://www.cs.utexas.edu/users/oops/papers.html

CSE 341 Spring 2007, Lecture 29 19


