
 TCS Developer’s SIG

 February 6, 2007

William Mitchell (whm)

Mitchell Software Engineering (.com)

A Look at Ruby

A Look at Ruby Slide 2
William H. Mitchell, whm@msweng.com

A Look at Ruby Slide 3
William H. Mitchell, whm@msweng.com

Introduction

What is Ruby?

Running Ruby

Everything is an object

Variables have no type

Ruby's philosophy is often "Why not?"

A Look at Ruby Slide 4
William H. Mitchell, whm@msweng.com

What is Ruby?

"A dynamic, open source programming language with a focus on simplicity and productivity.
It has an elegant syntax that is natural to read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting language".

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese amateur language
designer" (his words). Here is a second-hand summary of a posting by Matz:

"Well, Ruby was born on February 24, 1993. I was talking with my colleague about the
possibility of an object-oriented scripting language. I knew Perl (Perl4, not Perl5), but I
didn't like it really, because it had smell of toy language (it still has). The
object-oriented scripting language seemed very promising."

 http://www.rubygarden.org/faq/entry/show/5

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I’m sure you’ll find out for yourself."

A Look at Ruby Slide 5
William H. Mitchell, whm@msweng.com

What is Ruby?

Ruby is a language in flux.

• Version 1.8.5 is the stable, recommended version. Version 1.9 is available.

• There is no written standard for Ruby. The language is effectively defined by
MRI—Matz' Ruby Implementation.

Ruby is getting a lot of attention and press at the moment. Two popular topics:

• Ruby on Rails, a web application framework.

• JRuby, a 100% pure-Java implementation of Ruby. With JRuby, among other things,
you can use Java classes in Ruby programs. (jruby.codehaus.org)

A Look at Ruby Slide 6
William H. Mitchell, whm@msweng.com

Running Ruby

One way to execute Ruby code is with irb, the Interactive Ruby Shell.

irb evaluates expressions as are they typed.

% irb
>> 1 + 2
=> 3

>> "testing" + "123"
=> "testing123"

>> it.upcase My ~/.irbrc defines it as the previous result.
=> "TESTING123"

>> it.class
=> String

>> Math.cos(Math::PI / 3)
=> 0.5

A Look at Ruby Slide 7
William H. Mitchell, whm@msweng.com

Running Ruby, continued

Source code in a file can be executed with the ruby command.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!
%

Note that the code does not need to be enclosed in a method—"top level" expressions are
evaluated when encountered. (Later we'll see how to enclose code in a method.)

Existing Ruby implementations have no notion of compilation to a binary. There are no
"executables", intermediate code files, etc.

A Look at Ruby Slide 8
William H. Mitchell, whm@msweng.com

Everything is an object

In Ruby, every value is an object.

Methods are invoked using value.method(parameters...).

>> "testing".index("i")
=> 4

>> "testing".slice(2,3)
=> "sti"

Parentheses can be omitted from an argument list:

>> "testing".gsub /[aeiou]/, "-"
=> "t-st-ng"

If a method requires no parameters the parameter list can be omitted.

>> "testing".length
=> 7

A Look at Ruby Slide 9
William H. Mitchell, whm@msweng.com

Everything is an object, continued

Of course, "everything" includes numbers:

>> 7.class => Fixnum

>> 1.2.class => Float

>> (30-40).abs => 10

>> Math.exp(1).to_s
=> "2.71828182845905"

>> 17**50
=> 33300140732146818380750772381422989832214186835186851059977249

>> it.class => Bignum

A Look at Ruby Slide 10
William H. Mitchell, whm@msweng.com

Variables have no type

In languages like C and Java, variables are declared to have a type. The compiler ensures
that all operations are valid for the types involved.

Variables in Ruby do not have a type. Instead, type is associated with values.

>> x = 10 => 10

>> x = "ten" => "ten"

>> x.class => String

>> x = x.length => 3

Here's another way to think about this: Every variable can hold a reference to an object.
Because every value is an object, any variable can hold any value.

A Look at Ruby Slide 11
William H. Mitchell, whm@msweng.com

Variables have no type, continued

It is often said that Java uses static typing. Ruby, like most scripting languages, uses
dynamic typing.

Sometimes the term strong typing is used to characterize languages like Java and weak typing
is used to characterize languages like Ruby but those terms are now often debated and
perhaps best avoided.

Another way to describe a language's type-checking mechanism is based on when the
checking is done. Java uses compile-time type checking. Ruby uses run-time type checking.

Some statically-typed languages do some type checking at run-time. An example of a run-
time type error is Java's ClassCastException. C does absolutely no type-checking at run-
time. Ruby does absolutely no type-checking at compile-time.

 Here's one discussion: http://www.artima.com/weblogs/viewpost.jsp?thread=46391

A Look at Ruby Slide 12
William H. Mitchell, whm@msweng.com

Variables have no type, continued

In a statically typed language a number of constraints can be checked at compile time. For
example, all of the following can be verified when a C# program is compiled:

x.getValue() x must have a getValue method

x * y x and y must be of compatible types for *

x.f(1,2,3) x.f must accept three integer parameters

In contrast, a typical compiler for a dynamically typed language does not attempt to verify
any of the above when the code is compiled.

For years it has been widely held in industry that static typing is a must for reliable systems
but a shift in thinking is underway. It is increasingly believed that good test coverage can
produce equally reliable software. 1

A Look at Ruby Slide 13
William H. Mitchell, whm@msweng.com

Ruby's philosophy is often "Why not?"

When designing a language, some designers ask, "Why should feature X be included?"
Some designers ask the opposite: "Why should feature X not be included?"

Ruby's philosophy is often "Why not?" Here are some examples, involving overloaded
operators:

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1,2,3] + [] + [4,5,6] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> [1, 3, 15, 1, 2, 1, 3, 7] & [4, 3, 2, 1]
=> [1, 3, 2]

>> [10, 20, 30] * "..."
=> "10...20...30"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

A Look at Ruby Slide 14
William H. Mitchell, whm@msweng.com

Building blocks

nil

Strings

Numbers

Arrays

A Look at Ruby Slide 15
William H. Mitchell, whm@msweng.com

The value nil

nil is Ruby's "no value" value. The name nil references the only instance of the class
NilClass.

>> nil => nil

>> nil.class => NilClass

>> nil.object_id => 4

We'll see that Ruby uses nil in a variety of ways.

A Look at Ruby Slide 16
William H. Mitchell, whm@msweng.com

Strings

Instances of Ruby's String class are used to represent character strings.

One way to specify a literal string is with double quotes. A number of escapes are available.

>> "newline: \012, escape: \x1b, return: \cm"
=> "newline: \n, escape: \e, return: \r"

In a string literal using apostrophes only \' and \\ are recognized as escapes:

>> '\n\'\t'.length Five characters: backslash, n, apostrophe, backslash, t
=> 5

An even more literal form is provided by %q{ ... }

>> %q{ just testin' this! ~@$%^&*()"[]<>,.}
=> " just testin' this! ~@$%^&*()\"[]<>,."

There's a fourth way, too, similar to "here documents" in UNIX shells.

How many ways to do something is too many?

A Look at Ruby Slide 17
William H. Mitchell, whm@msweng.com

Strings, continued

The public_methods method shows the public methods that are available for an object.
Here are some of the methods for String:

>> "abc".public_methods.sort
=> ["%", "*", "+", "<", "<<", "<=", "<=>", "==", "===", "=~", ">", ">=", "[]", "[]=",
"__id__", "__send__", "all?", "any?", "between?", "capitalize", "capitalize!", "casecmp",
"center", "chomp", "chomp!", "chop", "chop!", "class", "clone", "collect", "concat",
"count", "crypt", "delete", "delete!", "detect", "display", "downcase", "downcase!",
"dump", "dup", "each", "each_byte", "each_line", "each_with_index", "empty?",
"entries", "eql?", "equal?", "extend", "find", "find_all", "freeze", "frozen?", "gem",
"grep", "gsub", "gsub!", "hash", "hex", "id", "include?", "index", "inject", "insert",
"inspect", "instance_eval", "instance_of?", "instance_variable_get",
"instance_variable_set", "instance_variables", "intern", "is_a?", "kind_of?", "length",
"ljust", "lstrip", "lstrip!", "map", "match", "max", "member?", "method",
"methods","min", "next", "next!", "nil?", "object_id", "oct", "partition",
"private_methods", "protected_methods", "public_methods", "reject", "replace",
"require", "require_gem", "respond_to?", "reverse", "reverse!", "rindex", "rjust", "rstrip",
"rstrip!", "scan", "select", "send", ...

>> "abc".public_methods.length
=> 145

A Look at Ruby Slide 18
William H. Mitchell, whm@msweng.com

Strings, continued

Unlike Java, C#, and many other languages, strings in Ruby are mutable. If two variables
reference a string and the string is changed, the change is reflected by both variables:

>> x = "testing"
=> "testing"

>> y = x x and y now reference the same instance of String.
=> "testing"

>> x.upcase! Convention: If there are both applicative and imperative forms of a
method, the name of the imperative form ends with an exclamation.

=> "TESTING"

>> y
=> "TESTING"

Some objects that hold strings make a copy of the string when the string is added to the
object.

A Look at Ruby Slide 19
William H. Mitchell, whm@msweng.com

Strings, continued

Strings can be compared with a typical set of operators:

>> "apple" == "ap" + "ple" => true

>> "apples" != "oranges" => true

>> "apples" >= "oranges" => false

There is also a "general" comparison operator. It produces -1, 0, or 1 depending on whether
the first operand is less than, equal to, or greater than the second operand.

>> "apple" <=> "testing" => -1

>> "testing" <=> "apple" => 1

>> "x" <=> "x" => 0

A Look at Ruby Slide 20
William H. Mitchell, whm@msweng.com

Strings, continued

A individual character can be fetched from a string but note that the result is
an integer character code (an instance of Fixnum), not a one-character string:

>> s = "abc" => "abc"

>> s[0] => 97 The ASCII code for 'a'

>> s[1] => 98

>> s[-1] => 99 -1 is the last character, -2 is next to last, etc.

>> s[100] => nil

A Look at Ruby Slide 21
William H. Mitchell, whm@msweng.com

Strings, continued

A subscripted string can be the target of an assignment.

>> s = "abc" => "abc"

>> s[0] = 65 => 65

>> s[1] = "tomi" => "tomi"

>> s => "Atomic"

The numeric code for a character can be obtained by preceding the character with a question
mark:

>> s[0] = ?B => 66

>> s => "Btomic"

A Look at Ruby Slide 22
William H. Mitchell, whm@msweng.com

Strings, continued

A substring can be referenced in several ways.

>> s = "replace" => "replace"

>> s[2,3] => "pla" Start at 2, length of 3.

>> s[2,1] => "p" Remember that s[n] yields a number, not a string.

>> s[2..-1] => "place" 2..-1 creates a Range object.

>> s[10,10] => nil

>> s[-4,3] => "lac"

Speculate: What does s[1,100] produce? How about s[-1,-3]?

A Look at Ruby Slide 23
William H. Mitchell, whm@msweng.com

Strings, continued

A substring can be the target of assignment:

>> s = "replace" => "replace"

>> s[0,2] = "" => ""

>> s => "place"

>> s[3..-1] = "naria" => "naria"

>> s => "planaria"

If a string is the subscript it specifies the first occurrence of that string.

>> s["aria"] = "kton" => "kton"

>> s => "plankton"

Speculate: What does s["xyz"] = "abc" produce?

A Look at Ruby Slide 24
William H. Mitchell, whm@msweng.com

Strings, continued

In a string literal enclosed with double quotes the sequence #{expr} causes interpolation of
expr, an arbitrary Ruby expression.

>> s = "2 + 2 = #{2 + 2}" => "2 + 2 = 4"

>> s = "String methods: #{"abc".methods}".length
=> 896

The << operator appends to a string (imperatively!) and produces the new string.

>> s = "just" => "just"

>> s << "testing" << "this" => "justtestingthis"

Speculate: What's the result of "a" << "b"?

A Look at Ruby Slide 25
William H. Mitchell, whm@msweng.com

Numbers

On most machines, integers in the range -2 to 2 -1 are represented by instances of Fixnum. 30 30

Integers outside that range are represented with a Bignum.

>> x = 2**30-1 => 1073741823 The exponentiation operator is **

>> x.class => Fixnum

>> x += 1 => 1073741824

>> x.class => Bignum

>> x -= 1 => 1073741823

>> x.class => Fixnum

Unlike many scripting languages, Ruby does not automatically convert between strings and
numbers when needed.

>> 10 + "20"
TypeError: String can't be coerced into Fixnum

A Look at Ruby Slide 26
William H. Mitchell, whm@msweng.com

Numbers, continued

Instances of Float represent floating point numbers that can be represented by a double-
precision floating point number on the host architecture.

>> x = 123.456 => 123.456

>> x.class => Float

>> x ** 0.5 => 11.1110755554987

>> x * 2e-3 => 0.246912

>> x = x / 0.0 => Infinity

>> (0.0/0.0).nan? => true

Fixnums and Floats can be mixed. The result is a Float.

Other numeric classes in Ruby include BigDecimal, Complex, Rational and Matrix.

The speaker often makes the mistake of saying "list" instead of "array".1

A Look at Ruby Slide 27
William H. Mitchell, whm@msweng.com

Arrays

A Ruby Array is an ordered sequence of values. 1

An array can be created by enclosing a comma-separated sequence of values in square
brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 10**40]
=> ["ten", 20, 30.0, 100]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 100],
[[[10, 20, 30]]]]

Arrays can hold values of any type. Cyclic structures are permitted.

A Look at Ruby Slide 28
William H. Mitchell, whm@msweng.com

Arrays, continued

Array elements and subarrays (sometimes called slices) are specified with the same notation
that is used for string subscripting.

>> a = [1, "two", 3.0, %w{a b c d}] %w{ ... } creates an array of strings.
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0] => 1

>> a[1,2] => ["two", 3.0]

>> a[-1][-2] => "c"

>> a[-1][-2][0] => 99

A Look at Ruby Slide 29
William H. Mitchell, whm@msweng.com

Arrays, continued

Elements and subarrays can be assigned to. Ruby accommodates a variety of cases; here are
some:

>> a = [10, 20, 30, 40, 50, 60]
=> [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a Note: Semicolon separates expressions; a's value is shown.
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

>> a[0] = [1,2,3]; a
=> [[1, 2, 3]]

>> a[10] = [5,6]; a
=> [[1, 2, 3], nil, nil, nil, nil, nil, nil, nil, nil, nil, [5, 6]]

A Look at Ruby Slide 30
William H. Mitchell, whm@msweng.com

Arrays, continued

A number of methods are availabe for arrays:

>> [].methods.sort
=> ["&", "*", "+", "-", "<<", "<=>", "==", "===", "=~", "[]", "[]=", "__id__", "__send__",
"all?", "any?", "assoc", "at" , "class", "clear", "clone", "collect", "collect!", "compact",
"compact!", "concat", "delete", "delete_at", "delete_if", "detect", "display", "dup",
"each", "each_index", "each_with_index", "empty?", "entries", "eql?", "equal?",
"extend", " fetch", "fill", "find", "find_all", "first", "flatten", "flatten!", "freeze", "frozen?",
"gem", "grep", "hash", "id", "include?", "index", "indexes", "indices", "inject", "insert",
"inspect", "instance_eval", "instance_of?", "instance_variable_get",
"instance_variable_set", "instance_variables", "is_a?", "join", "kind_of?", "last",
"length", "map", "map!", "max", "member?", "method", "methods", "min", "nil?",
"nitems", "object_id", "oid", "pack", "partition", "pop", "private_methods",
"protected_methods", "public_methods", "push", "rassoc", "reject", "reject!", "replace",
"require", "require_gem", "respond_to?", "reverse", "reverse!", "reverse_each",
"rindex", "select", "send", "shift", "singleton_methods", "size", "slice", "slice!", "sort",
"sort!", "sort_by", "taint", "tainted?", "to_a", "to_ary", "to_s", "transpose", "type","uniq",
"uniq!", "unshift", "untaint", "values_at", "zip", "|"]

>> it.length
=> 122

A Look at Ruby Slide 31
William H. Mitchell, whm@msweng.com

Control structures

The while loop

Logical operators

if-then-else

if and unless as modifiers

The for loop

A Look at Ruby Slide 32
William H. Mitchell, whm@msweng.com

The while loop

Here is a loop that prints the numbers from 1 through 10:

i = 1
while i <= 10 do "do" is optional
 puts i
 i += 1
end "end" is required, even if only one statement in body

When i <= 10 produces false, control branches to the code following end.

A Look at Ruby Slide 33
William H. Mitchell, whm@msweng.com

while, continued

In Java, control structures like if, while, and for are driven by the result of expressions that
produce a value whose type is boolean.

C has a more flexible view: control structures consider any non-zero integer value to be
"true".

In Ruby, any value that is not false or nil is considered to be "true".

Consider this loop, which reads lines from standard input using gets.

while line = gets
 puts line
end

Problem: Given that gets returns nil at end of file, explain how the loop works.

 I bet some of you get this wrong the first time, like I did!1

A Look at Ruby Slide 34
William H. Mitchell, whm@msweng.com

while, continued

The string returned by gets has a trailing newline. String's chomp method can be used to
remove it.

Here's a program that is intended to "flatten" its input to a single line:

result = ""

while line = gets.chomp
 result += line
end

puts result

Why doesn't it work?

Problem: Write a while loop that prints the characters in the string s, one per line. Don't use
the length method of String.1

A Look at Ruby Slide 35
William H. Mitchell, whm@msweng.com

Logical operators

Conjunction in Ruby is &&, just like the C family, but the semantics are different:

>> true && false => false

>> true && "abc" => "abc"

>> true && false => false

>> false && nil => false

The disjunction operator is two "or bars":

>> false || 2 => 2

>> "abc" || "xyz" => "abc"

>> s[0] || s[3] => 97

>> s[4] || false => false

Challenge: Describe the rule that governs the result of conjunction and disjunction.

A Look at Ruby Slide 36
William H. Mitchell, whm@msweng.com

Logical operators, continued

Ruby has compound (augmented) assignment, just like the C family. With that in mind, what
is the meaning of the following expression?

x ||= 20

A Look at Ruby Slide 37
William H. Mitchell, whm@msweng.com

The if-then-else expression

Ruby's if-then-else is an expression, not a statement:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end
=> "three"

Speculate: What will 'if 1 > 2 then 3 end' produce?

Ruby also provides x > y ? 1 : 2 (a ternary conditional operator) just like the C family. Is
that a good thing or bad thing?

A Look at Ruby Slide 38
William H. Mitchell, whm@msweng.com

if and unless as modifiers

Conditional execution can be indicated by using if and unless as modifiers.

>> total, count = 123.4, 5

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0

>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:

expression1 if expression2
expression1 unless expression2

Question: What does 'x.f if x' mean?

A Look at Ruby Slide 39
William H. Mitchell, whm@msweng.com

The for loop

Here are three simple examples of Ruby's for loop:

for i in 1..100 do
 sum += i
end

for i in [10,20,30] do
 sum += i
end

for method_name in "x".methods do
 puts method_name if method_name.include? "!"
end

The "in" expression must be an object that has an each method. In the first case, the "in"
expression is a Range. In the latter two it is an Array.

A Look at Ruby Slide 40
William H. Mitchell, whm@msweng.com

Other flow control mechanisms

Ruby also has:

An elsif clause

break, next, redo, retry

A case expression that has two forms

A Look at Ruby Slide 41
William H. Mitchell, whm@msweng.com

Freestanding Methods

Basics

Where's the class?

Duck typing

A Look at Ruby Slide 42
William H. Mitchell, whm@msweng.com

Method definition

Here is a Ruby version of a simple method:

def double(x)
 return x * 2
end

The keyword def indicates that a method definition follows. Next is the method name. The
parameter list follows.

If the end of a method is reached without encountering a return, the value of the last
expression becomes the return value. Here is an equivalent definition:

def double x
 x * 2
end

If no arguments are required, the parameter list can be omitted

def hello
 puts "Hello, world!"
end

A Look at Ruby Slide 43
William H. Mitchell, whm@msweng.com

If double is a method, where's the class?

You may have noticed that even though we claim to be defining a method named double,
there's no class in sight.

In Ruby, methods can be added to a class at run-time. A freestanding method defined in irb
or found in a file is associated with an object referred to as "main", an instance of Object. At
the top level, the name self references that object.

>> [self.class, self.to_s]
=> [Object, "main"] # The class of self and a string representation of it.

>> methods_b4 = self.methods
=> ["methods", "popb", ...lots more...]

>> def double(x); x * 2 end
=> nil

>> self.methods - methods_b4
=> ["double"]

We can see that self has one more method (double) after double is defined.

A Look at Ruby Slide 44
William H. Mitchell, whm@msweng.com

Domain and range in Ruby

For reference:

def double(x)
 x * 2
end

For the C family analog of double the domain and range are the integers.

What is the domain and range of double in Ruby?

A Look at Ruby Slide 45
William H. Mitchell, whm@msweng.com

Duck typing

For reference:

def double(x)
 x * 2
end

In computer science literature a routine such as double is said to be polymorphic—it can
operate on data of more than one form.

In the Ruby community it is said that double uses "duck typing".

The term "duck typing" comes from the "duck test":
If it walks like a duck and quacks like a duck, it must be a duck.

What's the "duck test" for x in the routine above?

A Look at Ruby Slide 46
William H. Mitchell, whm@msweng.com

Duck typing, continued

Imagine a method polysum(A) that produces a "sum" of the values in the array A:

>> polysum([1,3,5]) => 9

>> polysum([1.1,3.3,5.5]) => 9.9

>> polysum(["one", "two"]) => "onetwo"

>> polysum([["one"], [2,3,4], [[1],[1..10]]])
=> ["one", 2, 3, 4, [1], [1..10]]

What's the duck test for polysum?

Write polysum!

A Look at Ruby Slide 47
William H. Mitchell, whm@msweng.com

Iterators and blocks

Using iterators and blocks

Iterate with each or use a for loop?

Creating iterators

A Look at Ruby Slide 48
William H. Mitchell, whm@msweng.com

Iterators and blocks

Some methods are iterators. An iterator that is implemented by the Array class is each.
each iterates over the elements of the array. Example:

>> x = [10,20,30]
=> [10, 20, 30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30]

The construct { puts "element" } is a block. Array#each invokes the block once for each of
the elements of the array.

Because there are three values in x, the block is invoked three times and "element" is printed
three times.

A Look at Ruby Slide 49
William H. Mitchell, whm@msweng.com

Iterators and blocks, continued

Iterators can pass one or more values to a block as arguments. Array#each passes each
array element in turn.

A block can access arguments by naming them with a parameter list, a comma-separated
sequence of identifiers enclosed in vertical bars.

We might print the values in an array like this:

>> [10, "twenty", 30].each { |e| printf("element: %s\n", e) }
element: 10
element: twenty
element: 30

A Look at Ruby Slide 50
William H. Mitchell, whm@msweng.com

Sidebar: Iterate with each or use a for loop?

The for loop requires the result of the "in" expression to have an each method. Thus, we
always have a choice between a for loop,

for name in "x".methods do
 puts name if name.include? "!"
end

and iteration with each,

"x".methods.each {|name| puts name if name.include? "!" }

Which is better?

A Look at Ruby Slide 51
William H. Mitchell, whm@msweng.com

Iterators and blocks, continued

The iterator Array#each is commonly used to create side effects of interest, like printing
values or changing variables. In contrast, the "work" of some iterators is to produce a value.

>> [10, "twenty", 30].map { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

>> ["burger", "fries", "shake"].sort { |a,b| a[-1] <=> b[-1] } Like C's qsort...
=> ["shake", "burger", "fries"]

>> [10, 20, 30].inject(0) { |sum, i| sum + i }
=> 60

>> [10,20,30].inject([]) { |thusFar, element| thusFar + [element, "---"] }
=> [10, "---", 20, "---", 30, "---"]

The computation performed by inject is known in functional programming literature as
"folding".

Challenge: Perform mapping and selection using inject.

A Look at Ruby Slide 52
William H. Mitchell, whm@msweng.com

Iterators and blocks, continued

Many classes have iterators. Here are some examples:

>> 3.times { |i| puts i }
0
1
2
=> 3

>> "abc".each_byte { |b| puts b }
97
98
99

>> (1..50).inject(1) { |product, i| product * i }
=> 30414093201713378043612608166064768844377641568960512000000000000

To print every line in the file x.txt, we might do this:

IO.foreach("x.txt") { |line| puts line }

A Look at Ruby Slide 53
William H. Mitchell, whm@msweng.com

Blocks and iterators, continued

As you'd expect, blocks can be nested. Here is a program that reads lines from standard
input, assumes the lines consist of integers separated by spaces, and averages the values.

total = n = 0
STDIN.readlines().each {
 |line|
 line.split(" ").each {
 |word|
 total += word.to_i
 n += 1
 }
 }

printf("Total = %d, n = %d, Average = %g\n", total, n, total / n.to_f) if n != 0

Notes:
• STDIN represents "standard input". It is an instance of IO.
• STDIN.readlines reads standard input to EOF and returns an array of the lines read.
• The printf format specifier %g indicates to format the value as a floating point

number and select the better of fixed point or exponential form based on the value.

% cat nums.dat
5 10 0 50

 200
1 2 3 4 5 6 7 8 9 10
% ruby sumnums.rb < nums.dat
Total = 320, n = 15, Average = 21.3333

A Look at Ruby Slide 54
William H. Mitchell, whm@msweng.com

Some details on blocks

An alternative to enclosing a block in braces is to use do/end:

a.each do
|element|

 printf("element: %s\n", element)
 end

Scoping issues with blocks:

• If a variable is created in a block, the scope of the variable is limited to the block.

• If a variable already exists, a reference to it in a block is resolved to the existing
instance.

• It's said that this behavior may change with Ruby 2.0.

A Look at Ruby Slide 55
William H. Mitchell, whm@msweng.com

Creating iterators with yield

In Ruby, an iterator is "a method that invokes a block".

The yield expression invokes the block associated with the current method invocation.

Here is a simple, chatty iterator that yields two values, a 3 and a 7:

def simple()
 puts "simple: Starting up..."
 yield 3

 puts "simple: More computing..."
 yield 7

 puts "simple: Out of values..."
 "simple result"
end

Notice how the flow of control alternates between the iterator and the block.

To some extent, a block can be thought of as an anonymous function; yield can be thought of
as a call to that function.

Usage:

>> simple() { |x| printf("\tx = %d\n", x) }
simple: Starting up...
 x = 3
simple: More computing...
 x = 7
simple: Out of values...
=> "simple result"

A Look at Ruby Slide 56
William H. Mitchell, whm@msweng.com

yield, continued

Recall that Array#select produces the elements for which the block returns true:

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

Speculate: How is the code in select accessing the result of the block?

A Look at Ruby Slide 57
William H. Mitchell, whm@msweng.com

yield, continued

The last expression in a block becomes the value of the yield that invoked the block.

Here is a function-like implementation of select:

def select(enumerable)
 result = []
 enumerable.each {
 |element|
 if yield element then
 result << element
 end
 }
 return result
end

Usage:

>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

A Look at Ruby Slide 58
William H. Mitchell, whm@msweng.com

A Look at Ruby Slide 59
William H. Mitchell, whm@msweng.com

Class definition

Counter: A tally counter

An interesting thing about instance variables

Addition of methods

An interesting thing about class definitions

Sidebar: Fun with eval

Class variables and methods

A little bit on access control

Getters and setters

A Look at Ruby Slide 60
William H. Mitchell, whm@msweng.com

A tally counter

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of
Counter:

c1 = Counter.new
c1.click
c1.click
puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click
puts c2 # Output: c2's count is 1

c2.click
printf("c2 = %d\n", c2.count) # Output: c2 = 2

A Look at Ruby Slide 61
William H. Mitchell, whm@msweng.com

Counter, continued

Here is a partial implementation of Counter:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The reserved word class begins a class definition; a corresponding end terminates it. A
class name must begin with a capital letter.

The name initialize identifies the method as the constructor.

c1 = Counter.new

c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

A Look at Ruby Slide 62
William H. Mitchell, whm@msweng.com

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The constructor initializes two instance variables: @count and @label.

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when a value is assigned to it.

Each object has its own copy of instance variables.

Unlike variables local to a method, instance variables have a default value of nil.

A Look at Ruby Slide 63
William H. Mitchell, whm@msweng.com

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

When irb displays an object, the instance variables are shown:

>> a = Counter.new "a"
=> #<Counter:0x2c61eb4 @label="a", @count=0>

>> b = Counter.new
=> #<Counter:0x2c4da04 @label="Counter", @count=0>

A Look at Ruby Slide 64
William H. Mitchell, whm@msweng.com

Counter, continued

Here's the full source:

class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end
 def click
 @count += 1
 end
 def reset
 @count = 0
 end
 def count # Note the convention: count, not get_count
 @count
 end
 def to_s
 return "#{@label}'s count is #{@count}"
 end
end

Common error: Omitting the @ on a reference to an instance variable.

A Look at Ruby Slide 65
William H. Mitchell, whm@msweng.com

An interesting thing about instance variables

Consider this class:

class X
 def initialize(n)
 case n
 when 1 then @x = 1
 when 2 then @y = 1
 when 3 then @x = @y = 1
 end
 end
end

What's interesting about the following?

>> X.new 1 => #<X:0x2c26a44 @x=1>

>> X.new 2 => #<X:0x2c257d4 @y=1>

>> X.new 3 => #<X:0x2c24578 @x=1, @y=1>

A Look at Ruby Slide 66
William H. Mitchell, whm@msweng.com

Addition of methods

In Ruby, a method can be added to a class without changing the source code for the class. In
the example below we add a label method to Counter, to fetch the value of the instance
variable @label.

>> c = Counter.new "ctr 1"
=> #<Counter:0x2c26bac @label="ctr 1", @count=0>

>> c.label
NoMethodError: undefined method `label' for #<Counter @label="ctr 1", @count=0>

>> class Counter
>> def label
>> @label
>> end
>> end
=> nil

>> c.label
=> "ctr 1"

What are the implications of this capability?

A Look at Ruby Slide 67
William H. Mitchell, whm@msweng.com

Addition of methods, continued

We can add methods to built-in classes!

class Fixnum
 def rand

 raise ArgumentError if self < 1
 Kernel.rand(self)+1

 end
end

class String
 def rand

 raise ArgumentError if size == 0
 self[self.size.rand-1,1]
end

end

Usage:

>> (1..10).collect { 5.rand } => [3, 1, 3, 2, 1, 2, 2, 5, 2, 4]

>> (1..20).collect { "ATCG".rand }.to_s => "CAGACAATGCTCCATCACAG"

A Look at Ruby Slide 68
William H. Mitchell, whm@msweng.com

An interesting thing about class definitions

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class X; end)
nil
=> nil

>> class X; puts "here"; end
here
=> nil

A Look at Ruby Slide 69
William H. Mitchell, whm@msweng.com

Class definitions are executable code

In fact, a class definition is executable code. Consider the following, which uses a case
statement to selectively execute defs for methods.

class X pickms.rb
 print "What methods would you like? "
 gets.split.each { |m|
 case m
 when "f" then def f; "from f" end
 when "g" then def g; "from g" end
 when "h" then def h; "from h" end
 end
 }
end

Execution:

What methods would you like? f g
>> c = X.new => #<X:0x2c2b224>
>> c.f => "from f"
>> c.h
NoMethodError: undefined method `h' for #<X:0x2c2b224>

A Look at Ruby Slide 70
William H. Mitchell, whm@msweng.com

Sidebar: Fun with eval

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc" => "abc"

>> n = 3 => 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse

=> "cba"

Look carefully at the above. Note that eval uses variables from the current environment and
that an assignment to x is reflected in the environment.

Bottom line: A Ruby program can generate easily code for itself.

A Look at Ruby Slide 71
William H. Mitchell, whm@msweng.com

Sidebar, continued

Problem: Create a file new_method.rb with a class X that prompts the user for a method
name, parameters, and method body. It then creates that method. Repeat.

>> load "new_method.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? a
What shall it do? a[-1]
Method last(a) added to class X

What method would you like? ^D

>> c = X.new => #<X:0x2c2980c>

>> c.add(3,4) => 7

>> c.last [1,2,3] => 3

A Look at Ruby Slide 72
William H. Mitchell, whm@msweng.com

Sidebar, continued

Solution:

class X
 while true
 print "What method would you like? "
 name = gets || break
 name.chomp!

 print "Parameters? "
 params = gets.chomp

 print "What shall it do? "
 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)
 print("Method #{name}(#{params}) added to class #{self}\n\n");
 end
end

Is this a useful capability or simply fun to play with?

A Look at Ruby Slide 73
William H. Mitchell, whm@msweng.com

Getters and setters

If Counter were in Java, we might provide methods like void setCount(int n) and int
getCount().

In Counter we provide a method called count to fetch the count.

Instead of something like setCount, we'd do this:

def count= n # Note the trailing '='
 print("count=(#{n}) called\n")
 @count = n unless n < 0
end

Usage:

>> c = Counter.new => #<Counter:0x2c94094 @label="Counter", @count=0>

>> c.count = 10
count=(10) called

>> c => #<Counter:0x2c94094 @label="Counter", @count=10>

A Look at Ruby Slide 74
William H. Mitchell, whm@msweng.com

Getters and setters, continued

Here's class to represent points on a 2d Cartesian plane:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 def x; @x end
 def y; @y end
end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x2c72c78 @x=3, @y=4>

>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter methods, like Point#x
and Point#y.

A Look at Ruby Slide 75
William H. Mitchell, whm@msweng.com

Getters and setters, continued

The method attr_reader creates getter methods. Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y # :x and :y are Symbols. (But "x" and "y" work, too!)
end

Usage:

>> p = Point.new(3,4) => #<Point:0x2c25478 @x=3, @y=4>

>> p.x => 3

>> p.y => 4

>> p.x = 10
NoMethodError: undefined method `x=' for #<Point:0x2c29924 @y=4, @x=3>

Why does p.x = 10 fail?

A Look at Ruby Slide 76
William H. Mitchell, whm@msweng.com

A Look at Ruby Slide 77
William H. Mitchell, whm@msweng.com

Operator overloading

Operators as methods

Overloading in other languages

Overloading in Ruby

Mutability, and monkeying with math

A Look at Ruby Slide 78
William H. Mitchell, whm@msweng.com

Operators as methods

It is possible to express most operators as method calls. Here are some examples:

>> 3.+(4) => 7

>> "abc".* 2 => "abcabc"

>> "testing".[](2) => 115

>> "testing".[](2,3) => "sti"

>> 10.==20 => false

In general, expr1 op expr2 can be written as expr1.op expr2

Unary operators require a little more syntax:

>> 5.-@() => -5

A Look at Ruby Slide 79
William H. Mitchell, whm@msweng.com

Operator overloading in other languages

In most languages at least a few operators are "overloaded"—an operator stands for more
than one operation.

Examples:

C: + is used to express addition of integers, floating point numbers, and
pointer/integer pairs.

Java: + is used to express numeric addition and string concatenation.

Icon: *x produces the number of...
characters in a string
values in a list
key/value pairs in a table
results a "co-expression" has produced
and more...

A Look at Ruby Slide 80
William H. Mitchell, whm@msweng.com

Operator overloading, continued

As a simple vehicle to study overloading in Ruby, imagine a dimensions-only rectangle:

class Rectangle
 def initialize(w,h); @width = w; @height =h; end
 def area; @width * @height; end
 attr_reader :width, :height

 def inspect irb uses inspect to print results
 "%g x %g Rectangle" % [@width, @height]
 end
end

Usage:

>> r = Rectangle.new(3,4) => 3 x 4 Rectangle

>> r.area => 12

>> r.width => 3

A Look at Ruby Slide 81
William H. Mitchell, whm@msweng.com

Operator overloading, continued

Let's imagine that we can compute the "sum" of two rectangles:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> b = Rectangle.new(5,6) => 5 x 6 Rectangle

>> a + b => 8 x 10 Rectangle

>> c = a + b + b => 13 x 16 Rectangle

>> (a + b + c).area => 546

As shown above, what does Rectangle + Rectangle mean?

A Look at Ruby Slide 82
William H. Mitchell, whm@msweng.com

Operator overloading, continued

Our vision:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle
>> b = Rectangle.new(5,6) => 5 x 6 Rectangle
>> a + b => 8 x 10 Rectangle

Here's how to make it so:

class Rectangle
 def + rhs
 Rectangle.new(self.width + rhs.width, self.height + rhs.height)
 end
end

Remember that a + b is equivalent to a.+(b). We are invoking the method "+" on a and
passing it b as a parameter. The parameter name, rhs, stands for "right-hand side".

A Look at Ruby Slide 83
William H. Mitchell, whm@msweng.com

Operator overloading, continued

Imagine a case where it is useful to reference width and height uniformly, via subscripts:

>> a = Rectangle.new(3,4) => 3 x 4 Rectangle

>> a[0] => 3

>> a[1] => 4

>> a[2] ArgumentError: out of bounds

Recall that a[0] is a.[](0).

Implementation:

def [] n
 case n
 when 0 then width
 when 1 then height
 else raise ArgumentError.new("out of bounds") Raises an exception
 end
end

A Look at Ruby Slide 84
William H. Mitchell, whm@msweng.com

Mutability, and monkeying with math

The ability to define meaning for operations like Rectangle + Rectangle leads us to say
that Ruby is extensible.

But Ruby is not only extensible, it is also mutable—we can change the meaning of standard
operations.

For example, if we wanted to be sure that a program never used integer addition or negation,
we could do this:

class Fixnum
 def + x
 raise "boom!"
 end
 def -@
 raise "boom!"
 end
end

In contrast, C++ is extensible, but not mutable. In C++, for example, you can define the
meaning of Rectangle * int but you can't change the meaning of integer addition, as we do
above.

A Look at Ruby Slide 85
William H. Mitchell, whm@msweng.com

Inheritance

Inheritance in Ruby

Java vs. Ruby

Modules and mixins

A Look at Ruby Slide 86
William H. Mitchell, whm@msweng.com

Inheritance in Ruby

A simple example of inheritance can be seen with clocks and alarm clocks. An alarm clock
is a clock with a little bit more. Here are trivial models of them in Ruby:

class Clock
 def initialize time
 @time = time
 end
 attr_reader :time
end

class AlarmClock < Clock
 attr_accessor :alarm_time
 def initialize time
 super(time)
 end
 def on; @on = true end
 def off; @on = false end
end

The less-than symbol specifies that AlarmClock is a subclass of Clock.

Just like Java, a call to super is used to pass arguments to the superclass constructor.

Ruby supports only single inheritance but "mixins" provide a solution for most situations
where multiple inheritance is useful. (More on mixins later.)

A Look at Ruby Slide 87
William H. Mitchell, whm@msweng.com

Inheritance, continued

Usage is not much of a surprise:

>> c = Clock.new("12:00") => #<Clock @time="12:00">

>> c.time => "12:00"

>> ac = AlarmClock.new("12:00") => #<AlarmClock @time="12:00">

>> ac.time => "12:00"

>> ac.alarm_time = "8:00" => "8:00"

>> ac.on => true

>> ac
=> #<AlarmClock:0x2c30c38 @on=true, @time="12:00", @alarm_time="8:00">

Note that AlarmClock's @on and @alarm_time attributes do not appear until they are set.

To keep things simple, times are represented with strings.

A Look at Ruby Slide 88
William H. Mitchell, whm@msweng.com

Inheritance, continued

The method alarm_battery creates a "battery" of num_clocks AlarmClocks. The first is
set for whenn. The others are set for intervals of interval minutes.

def alarm_battery(whenn, num_clocks, interval)
 battery = []
 num_clocks.times {
 c = AlarmClock.new("now") # Imagine this works
 c.alarm_time = whenn
 whenn = add_time(whenn, interval) # Imagine this method
 battery << c
 }
 battery
end

Usage:

>> battery = alarm_battery("8:00", 10, 5) => Array with ten AlarmClocks

>> battery.size => 10
>> p battery[2]
#<AlarmClock:0x2c19d94 @alarm_time="8:10", @time="22:06">

A Look at Ruby Slide 89
William H. Mitchell, whm@msweng.com

Modules

A Ruby module can be used to group related methods for organizational purposes.

Imagine a collection of methods to comfort a homesick ML programmer at Camp Ruby:

module ML
 def ML.hd a # Get the "head" (first element) of array a
 a[0]
 end
 def ML.drop a, n # Return a copy of a with the first n elements removed
 a[n..-1]
 end
 ...more...
end

>> a = [10, "twenty", 30, 40.0] => [10, "twenty", 30, 40.0]

>> ML.hd(a) => 10

>> ML.drop(a, 2) => [30, 40.0]

>> ML.tl(ML.tl(ML.tl(a))) => [40.0]

A Look at Ruby Slide 90
William H. Mitchell, whm@msweng.com

Modules as "mixins"

In addition to providing a way to group related methods, a module can be "included" in a
class. When a module is used in this way it is called a "mixin" because it mixes additional
functionality into a class.

Here is a revised version of the ML module:

module ML
 def hd; self[0]; end

 def tl; self[1..-1]; end

 def drop n; self[n..-1]; end

 def take n; self[0,n]; end
end

Note that these methods have one less parameter, operating on self instead of the parameter
a. For comparison, here's the first version of tl:

def ML.tl a
 a[1..-1]
end

A Look at Ruby Slide 91
William H. Mitchell, whm@msweng.com

Mixins, continued

We can mix our ML methods into the Array class like this:

class Array
 include ML
end

After loading the above code, we can use those ML methods on arrays:

>> ints = (1..10).to_a => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.hd => 1

>> ints.tl => [2, 3, 4, 5, 6, 7, 8, 9, 10]

>> ints.drop 3 => [4, 5, 6, 7, 8, 9, 10]

This is another example of duck typing. What's the duck test here?

How could we add these same capabilities to the String class?

A Look at Ruby Slide 92
William H. Mitchell, whm@msweng.com

Mixins, continued

An include is all we need to add the same capabilities to String:

class String
 include ML
end

>> s = "testing" => "testing"

>> s.tl => "esting"

>> s.hd => 116

>> s.drop 5 => "ng"

Could we do something like this in C# or Java?

In addition to the include mechanism, what other aspect of Ruby facilitates mixins?

A Look at Ruby Slide 93
William H. Mitchell, whm@msweng.com

Mixins, continued

The Ruby library makes extensive use of mixins.

The class method ancestors can be used to see the superclasses and modules that contribute
methods to a class:

>> Array.ancestors => [Array, Enumerable, Object, Kernel]

>> Fixnum.ancestors => [Fixnum, Integer, Precision, Numeric, Comparable,
Object, Kernel]

The method included_modules shows the modules that a class includes.

>> Array.included_modules => [Enumerable, Kernel]

>> Fixnum.included_modules => [Precision, Comparable, Kernel]

A Look at Ruby Slide 94
William H. Mitchell, whm@msweng.com

The Enumerable module

Here are the methods in Enumerable:

>> Enumerable.instance_methods.sort
=> ["all?", "any?", "collect", "detect", "each_with_index", "entries", "find", "find_all",
"grep", "include?", "inject", "map", "max", "member?", "min", "partition", "reject",
"select", "sort", "sort_by", "to_a", "zip"]

All of these methods are written in terms of a single method, each, which is an iterator.

If class implements each and includes Enumerable then all those 22 methods become
available to instances of the class.

In other words, if the object has an each method, the object is a duck!

A Look at Ruby Slide 95
William H. Mitchell, whm@msweng.com

The Enumerable module, continued

Because an instance of Array is an Enumerable, we can apply iterators in Enumerable to
arrays:

>> [2, 4, 5].any? { |n| n % 2 == 0 }
=> true

>> [2, 4, 5].all? { |n| n % 2 == 0 }
=> false

>> [1,10,17,25].detect { |n| n % 5 == 0 }
=> 10

>> ["apple", "banana", "grape"].max { |a,b| v = "aeiou";
 a.count(v) <=> b.count(v) }
=> "banana"

A Look at Ruby Slide 96
William H. Mitchell, whm@msweng.com

Enumerable, continued

Here's a class whose instances simply hold three values:

class Trio
 include Enumerable
 def initialize(a,b,c); @values = [a,b,c]; end
 def each
 @values.each {|v| yield v }
 end
end

Because Trio includes Enumerable, and provides each, we can do a lot with it:

>> t = Trio.new(10,"twenty",30) => #<Trio @values=[10, "twenty", 30]>

>> t.member?(30) => true

>> t.map { |e| e * 2 } => [20, "twentytwenty", 60]

>> t.partition { |e| e.is_a? Numeric } => [[10, 30], ["twenty"]]

A Look at Ruby Slide 97
William H. Mitchell, whm@msweng.com

The Comparable module

Another common mixin is Comparable. These methods,

>> Comparable.instance_methods
=> ["==", ">=", "<", "<=", "between?", ">"]

are implemented in terms of <=>.

Let's compare rectangles on the basis of areas:

class Rectangle
 include Comparable
 def <=> rhs
 diff = self.area - rhs.area
 case
 when diff < 0 then -1
 when diff > 0 then 1
 else 0
 end
 end
end

A Look at Ruby Slide 98
William H. Mitchell, whm@msweng.com

Comparable, continued

Usage:

>> r1 = Rectangle.new(3,4) => 3 x 4 Rectangle

>> r2 = Rectangle.new(5,2) => 5 x 2 Rectangle

>> r3 = Rectangle.new(2,2) => 2 x 2 Rectangle

>> r1 < r2 => false

>> [r1,r2,r3].sort => [2 x 2 Rectangle, 5 x 2 Rectangle, 3 x 4 Rectangle]

>> [r1,r2,r3].min => 2 x 2 Rectangle

>> r2.between?(r1,r3) => false

>> r2.between?(r3,r1) => true

A Look at Ruby Slide 99
William H. Mitchell, whm@msweng.com

Odds and Ends

Word tallying

Time totaling

A JRuby program

Graphics with Tk

What we didn't cover

Learning more about Ruby

A Look at Ruby Slide 100
William H. Mitchell, whm@msweng.com

Simple application: Word tallying

Imagine a program that tallies occurrences of words found on standard input:

% ruby tally.rb
to be or not to be
is not to be discussed
^Z
Word Count
to 3
be 3
not 2
or 1
discussed 1
is 1

This is a natural for implementation with Ruby's Hash class, which is a classic data structure
known by many names, including associative array, dictionary, map, and table.

A hash holds a collection of key/value pairs. In principle any object whatsoever may be a
key but Ruby has difficulties in some unusual cases. For example, using a cyclic array as a
key causes a stack overflow.

A Look at Ruby Slide 101
William H. Mitchell, whm@msweng.com

Word tallying, continued

counts = Hash.new(0) Produce zero for counts[key] if key is not found.

while line = gets Would it be better to use each with a block for these loops?
 for word in line.split
 counts[word] += 1 For example, counts["be"] += 1
 end
end

pairs = counts.sort { |a,b| b[1] <=> a[1] }

for k,v in [["Word","Count"]] + pairs
 printf("%-10s\t%5s\n", k, v)
end

A note about the sort:
Without the block, counts.sort would return an array like this: [[k1,v1], [k2, v2], ...]
with the pairs ordered by their respective keys, in ascending order.

An invocation of the block might have a = ["to", 3] and b = ["not", 2]. The comparison
produces a result that effects a sorted order by descending count.

A Look at Ruby Slide 102
William H. Mitchell, whm@msweng.com

Simple application: Time totaling

Consider an application that reads elapsed times on standard input and prints their total:

% ttl.rb
3h
15m
4:30
^D
7:45

Times in an unexpected format are ignored:

% ruby ttl.rb
10
What's 10? Ignored...
2:90
What's 2:90? Ignored...

A Look at Ruby Slide 103
William H. Mitchell, whm@msweng.com

Time totaling, continued

A solution using regular expressions:

def main
 mins = 0
 while line = gets do
 mins += parse_time(line.chomp)
 end
 printf("%d:%02d\n", mins / 60, mins % 60)
end

def parse_time(s)
 case
 when s =~ /^(\d+):([0-5]\d)$/
 $1.to_i * 60 + $2.to_i
 when s =~ /^(\d+)([hm])$/
 if $2 == "h" then $1.to_i * 60
 else $1.to_i end
 else
 print("What's #{s}? Ignored...\n"); 0
 end
end
main

A Look at Ruby Slide 104
William H. Mitchell, whm@msweng.com

An example of JRuby

require 'java' # swing2.rb from the JRuby samples
include_class "java.awt.event.ActionListener"
include_class ["JButton", "JFrame", "JLabel", "JOptionPane"]

.map {|e| "javax.swing." + e}

frame = JFrame.new("Hello Swing")
button = JButton.new("Klick Me!")

class ClickAction < ActionListener
def actionPerformed(evt)

JOptionPane.showMessageDialog(nil,
"<html>Hello from <u>JRuby</u>.
" +
"Button '#{evt.getActionCommand()}' clicked.")

end
end
button.addActionListener(ClickAction.new)

frame.getContentPane().add(button) # Add the button to the frame

frame.setDefaultCloseOperation(JFrame::EXIT_ON_CLOSE) # Show frame
frame.pack(); frame.setVisible(true)

A Look at Ruby Slide 105
William H. Mitchell, whm@msweng.com

Ruby graphics with Tk

class Circle tkpulse.rb
 SZ = 200
 def initialize(canvas, x, y)
 @canvas = canvas; @inc = 1; @ux = x - SZ/2; @uy = y - SZ/2
 @lx = @ux + SZ; @ly = @uy + SZ
 @oval = TkcOval.new(@canvas, @ux, @uy, @lx, @ly)
 tick
 end
 def tick
 @inc *= -1 if @ux >= @lx or (@ux - @lx).abs > SZ
 @ux += @inc; @uy += @inc; @lx -= @inc; @ly -= @inc
 @oval.coords(@ux, @uy, @lx, @ly)
 @canvas.after(10) { tick }
 end
end

$canvas = TkCanvas.new { width 700; height 500; pack }
$canvas.bind("1", lambda {|e| do_press(e.x, e.y)})

def do_press(x, y); Circle.new($canvas, x, y); end
Tk.mainloop()

A Look at Ruby Slide 106
William H. Mitchell, whm@msweng.com

What we didn't cover

It's possible to make good use of Ruby with only minimal knowledge of it but it's a big

language overall. Here are some of the things that were barely mentioned, or not mentioned

at all:

• Hashes

• Regular expressions

• The Proc and Kernel classes

• IDEs and debugging tools

• Reflection and metaprogramming

• Threads

• Exceptions

• Tainted data

• Hooks

• RDoc

• Extending Ruby with C

• Libraries for lots of interesting things

• The rake build tool

A Look at Ruby Slide 107
William H. Mitchell, whm@msweng.com

Learn more about Ruby

• The Ruby home page is ruby-lang.org.

• Programming Ruby—The Pragmatic Programmers' Guide, 2 edition, by Davend

Thomas with Chad Fowler and Andy Hunt, also known as the "pickaxe book", is
widely recognized as being the best book on Ruby at present.

The first edition is available for free: www.ruby-doc.org/docs/ProgrammingRuby

• Ruby Cookbook, by Lucas Carlson and Leonard Richardson, is packed full of small
but practical examples of using Ruby in a wide variety of settings.

 • Agile Web Development with Rails, 2 edition, by Dave Thomas et al. is commonlynd

recommended if you're interested in learning about Ruby on Rails. It assumes
knowledge of Ruby.

• The ruby-lang channel on irc.freenode.net is pretty good for live Q&A.

• Mitchell Software Engineering offers Ruby training tailored to suit your needs.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107

