
CSE 341, Winter 2008, Assignment 4
Due: Wednesday 20 February, 8:00AM

Last updated: February 7

You will write 8 Scheme functions (not counting helper functions) and 1 Scheme macro.
Begin by downloading hw4.scm from the course website. Add to this file to complete your homework.

Provided Code:
The code at the top of the file uses DrScheme’s graphics library to provide a simple and entertaining (?)
outlet for your streams. You need not understand this code (though it is not too complicated). This is how
you use it:

• (open-window) returns a graphics window you can pass as the first argument to place-repeatedly.

• (place-repeatedly window pause stream n) uses the first n values produced by stream. Each
stream element must be a pair where the first value is an integer between 0 and 5 inclusive and the
second value is a string that is the name of an image file (e.g., .jpg). (7 image files that will work well
are available on the course website). Every pause seconds (where pause is a decimal, i.e., floating-
point, number), the next stream value is retrieved, the corresponding image file is opened, and it is
placed in the window using the number in the pair to choose its position in a 2x3 grid as follows:

0 1 2
3 4 5

• If you are using DrScheme on a remote computer over the network, the time necessary to display
images might increase considerably.

The code at the bottom of the file provides an example use of place-repeatedly. This code requires you
complete several of the problems, of course. You should be able to figure out how this testing code should
behave. Of course, this test case may not be sufficient.

Warning: Only the first three problems are “warm-up” exercises for Scheme. Subsequent problems dive
into streams, memo-tables, and macros, which are nontrivial concepts.

Problems:

1. Write a function sequence that takes 3 arguments low, high, and stride, all assumed to be numbers.
sequence produces a list of numbers from low to high (including low but not high) separated by
stride and in sorted order. Sample solution: 4 lines. Examples:

Call Result
(sequence 3 11 2) (3 5 7 9 11)
(sequence 3 8 3) (3 6)
(sequence 3 2 1) ()

2. Write a function string-append-map that takes a list of strings lst and a string suffix and returns
a list of strings. The ith element of the output should be the concatenation of ith element of lst and
suffix. Use library functions map and string-append (see the language specification as necessary).
Sample solution: 2 lines.

3. Write a function list-nth-mod that takes a list lst and a number n. If n is negative or lst is empty,
use error to print an appropriate error message. (Write (error "blah") to terminate computation
with message "blah".) Otherwise, return the ith element of the list where we count from zero and
i is the remainder produced when dividing n by the length of the list. Library functions length,
remainder, car, and list-tail are all useful. Sample solution is about 7 lines; shorter solutions are
possible.

1



4. Write a stream dan-then-ben, where the elements of the stream alternate between "dan.jpg" and
"ben.jpg" (starting with "dan.jpg"). More specifically, (dan-then-ben) should produce a pair of
"dan.jpg" and a thunk that when called produces a pair of "ben.jpg" and a thunk that when called...
etc. Hint: Use 2 mutually recursive functions. Sample solution: 4 lines.

5. Write a function stream-add-zero that takes a stream s and returns another stream. If s would
produce v for its ith element, then (stream-add-zero s) would produce the pair (0 . v) for its ith

element. Sample solution: 4 lines. Hint: Use a thunk that when called uses s and recursion. Note:
You can test (stream-add-zero dan-then-ben) with place-repeatedly.

6. Write a function stream-for-n-steps that takes a stream s and a number n. It returns a list holding
the first n values produced by s in order. Sample solution: 5 lines. Note: You can test your streams
with this function instead of the graphics code.

7. Write a function cycle-lists that takes two lists numbers and filenames and returns a stream. The
first is a list of numbers and the second is a list of strings; the lists may or may not be the same
length. The elements produced by the stream are pairs where the first part is from numbers and the
second part is from filenames. The stream cycles forever through the lists. For example, if numbers
is (1 2 3) and filenames is ("a" "b"), then the stream would produce, (1 . "a"), (2 . "b"),
(3 . "a"), (1 . "b"), (2 . "a"), (3 . "b"), (1 . "a"), (2 . "b"), etc.

Sample solution is 6 lines and may be significantly more complicated than the previous stream problems.
Hints: Use one of the functions you wrote earlier. Use a recursive helper function that takes a number
n and calls itself with (+ n 1) (inside a thunk).

8. Write a function mtf-assoc (short for “move-to-front assocation”) that takes one argument lst, which
should be a list of pairs where the first parts of the pairs are numbers. mtf-assoc should return a
function that takes a number n and returns #f if no pair in lst has n for its first component else it
returns the first pair in lst with the number n.

However, mtf-assoc must use a memoization-like technique to “optimize” for repeated queries as
follows: mtf-assoc will return a closure that has a binding for the list in it. Whenever, this closure
returns a pair it also mutates (with set!) its binding for the list so that the returned pair is moved
to the front of the list. For example, if the initial list is ((1 . "a") (2 . "b") (3 . "c")) and 2
is passed to the closure, the code should make the new list ((2 . "b") (1 . "a") (3 . "c")) and
then use set! so that the next time the closure is used it uses this new list. Sample solution: 10 lines.

Hints: Use a local recursive helper function that keeps track of what list elements it has already seen
(in reverse order) and then use append, cons, and reverse (all provided by the language) to build the
new list. For testing, you might put in a print statement in your helper function so you can tell how
many times it iterates.

Note: It would be more efficient to use set-cdr! (in addition to set!) rather creating a new list each
time. You may do this if you wish. (Though if you do, you should copy the initial list passed to
mtf-assoc, else your mutation messes up callers who expect lst to stay unchanged.)

9. Write a macro orelse such that (orelse e1 e2) returns the result of e1 unless that result is #f in
which case it returns the result of e2. Evaluating (orelse e1 e2) must evaluate e1 exactly once. If
the result is #f it must evaluate e2 exactly once, else it must not evaluate e2.

10. Challenge Problem: Write cycle-lists-challenge. It should be equivalent to cycle-lists, but
its implementation must be more efficient. In particular, for each time the stream produces a new
value, the code must perform only two car operations and two cdr operations, including operations
performed by any function calls. So, for example, you cannot use length because it uses cdr multiple
times to compute a list’s length.

11. Challenge Problem: Write orelse-challenge, which is like orelse except it should take 2 or more
arguments. It must evaluate no argument more than once and not evaluate any arguments after the
first one that evaluates to something other than #f.

2



Assessment: Your solutions should be correct, in good style (including indentation and line breaks), and
using features we have used in class. In particular, only problem 8 should use mutation.

Turn-in Instructions

• Put all your solutions in one file, lastname hw4.scm, where lastname is replaced with your last name.

• The first line of your .scm file should be a Scheme comment with your name and the phrase homework
4.

• Go to https://catalysttools.washington.edu/collectit/dropbox/djg7/1359 (link available from
the course website), follow the “Homework 4” link, and upload your file.

3


