
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 10— Higher-Order Functions Wrapup; Type inference;

Parametric Polymorphism
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One Last Closure Example

Closures are essential to elegant functional programming.

See our 15 ways of counting zeros in a list to see how currying and

higher-order functions give us lots of flexibility.

• And some interesting reuse vs. straightforwardness vs. efficiency

trade-offs
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Now inference and type variables

• We have learned an interesting subset of ML expressions

• But we have been really informal about some aspects of the type

system:

– Type inference (what types do bindings implicitly have)

– Type variables (what do ’a and ’b really mean)

– Type constructors (why is int list a type but not list)

• Note: Type inference and parametric polymorphism are separate

concepts that end up intertwined in ML. A different language

could have one or the other.
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Type Inference

Some languages are untyped or dynamically typed.

ML is statically typed ; every binding has one type, determined during

type-checking (compile-time).

ML is implicitly typed ; programmers rarely need to write bindings’

types (e.g., if using features like #1)

The type-inference question: Given a program without explicit types,

produce types for all bindings such that the program type-checks, or

reject (only) if it is impossible.

Whether type inference is easy, hard, or impossible depends on details

of the type system: Making it more or less powerful (i.e., more

programs typecheck) may make inference easier or harder.
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ML Type Inference

• Determine types of bindings in order (earlier first) (except for

mutual recursion)

• For each val or fun binding, analyze the binding to determine

necessary facts about its type.

• Afterward, use type variables (e.g., ’a) for any unconstrained

types in function arguments or results.

• (One extra restriction to be discussed at the end.)

Amazing fact: For the ML type system, “going in order” this way

never causes unnecessary rejection.

[Let’s walk through a few examples, doing type inference by hand.]
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Comments on ML type inference

• If we had subtyping, the “equality constraints” we generated

would be unnecessarily restrictive.

• If we did not have type variables, we would not be able to give a

type to compose until we saw how it was used.

– But type variables are useful regardless of inference.

Dan Grossman CSE341 Winter 2008, Lecture 10 6



'

&

$

%

Parametric Polymorphism

Fancy phrase for “forall types” or sometimes “generics.” In ML since

mid-80s and now in Java, C#, VB, etc.

• C++ templates used similarly, but more like macros (later).

In ML, it’s like there’s an implicit “for all” at the beginning of any

type with ’a, ’b, etc. Example:

(’a * ’b) -> (’b * ’a)

really means:

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)

(though forall is just for lecture purposes; it is not in ML)

We can instantiate the type variables to get a less general type. For

example, with string for ’a and int->int for ’b we get:

(string * (int -> int)) -> ((int->int) * string)
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All the types

In principle, we could have a very flexible way of building types:

• Base types like int, string, real, ...

• Compound types like t1 * t2, t1 -> t2, and datatypes where

t1 and t2 are any type

• Polymorphic types like forall ’a. t where ’a can appear in t.

This would let you have types like

(forall ’a. ’a -> (’a * ’a)) -> ((int * int) * (bool * bool))

Every language has limits; in ML there is no type like this, the forall

is always implicit and always “all the way to the outside left”, for

example this different type:

(’a -> (’a * ’a)) -> ((int * int) * (bool * bool))

(caller must pick one instantiation)
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Example

This code is fine, but ML disallows it to make type inference easier.

(* function f does _not_ type-check *)

fun f pairmaker = (pairmaker 7, pairmaker true)

val x = f (fn y => (y,y))
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Versus Subtyping

Compare

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with

class Pair { Object x; Object y; ... }

Pair swap(Pair pr) { return new Pair(pr.y, pr.x); }

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast result

• Callee cannot return a pair of any two objects.

That’s why Java added generics...
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Java Generics

class Pair<T1,T2> {

T1 x;

T2 y;

Pair(T1 _x, T2 _y) { x=_x; y=_y; }

static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {

return new Pair<T2,T1>(pr.y,pr.x);

}

}

This really is a step forward despite the clutter (explicit types and type

definitions) versus

fun swap (x,y) = (y,x)
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Containers

Parametric polymorphism (forall types) are also the right thing for

containers (lists, sets, hashtables, etc.) where elements have the same

type.

Example: ML lists

val :: : (’a * (’a list)) -> ’a list (* infix is syntax *)

val map : ((’a -> ’b) * (’a list)) -> ’b list

val sum : int list -> int

val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

list is not a type; if t is a type, then t list is a type.
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User-defined type constructors

Language-design: don’t provide a fixed set of a useful thing.

Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype ’a rope = Empty

| Cons of ’a * (’a rope)

| Rope of (’a rope) * (’a rope)

You can have multiple type-parameters (not shown here).

And now, finally, everything about lists is syntactic sugar!
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One last thing – not on the test

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (* ’a list ref *)

val _ = x := ["hi"] (* instantiate ’a with string *)

val _ = (hd(!x)) + 7 (* instantiate ’a with int -- bad!! *)

To prevent this, ML has “the value restriction”: bindings can only get

polymorphic types if they are initialized with values.

Alas, that means this does not work even though it should be fine:

val pr_list = List.map (fn x => (x,x))

But these all work:

val pr_list = fun lst => List.map (fn x => (x,x)) lst

fun pr_list lst = List.map (fn x => (x,x)) lst

val pr_list : int list -> (int*int) list =

List.map (fn x => (x,x))
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