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/One Last Closure Example

Closures are essential to elegant functional programming.

See our 15 ways of counting zeros in a list to see how currying and
higher-order functions give us lots of flexibility.

e And some interesting reuse vs. straightforwardness vs. efficiency
trade-offs
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/I\Iow inference and type variables \

e \We have learned an interesting subset of ML expressions
e But we have been really informal about some aspects of the type
system:
— Type inference (what types do bindings implicitly have)
— Type variables (what do ’a and ’b really mean)
— Type constructors (why is int list a type but not list)
e Note: Type inference and parametric polymorphism are separate

concepts that end up intertwined in ML. A different language
could have one or the other.
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ﬂl’ype Inference \

Some languages are untyped or dynamically typed.

ML is statically typed; every binding has one type, determined during
type-checking (compile-time).

ML is implicitly typed; programmers rarely need to write bindings’
types (e.g., if using features like #1)

The type-inference question: Given a program without explicit types,
produce types for all bindings such that the program type-checks, or
reject (only) if it is impossible.

Whether type inference is easy, hard, or impossible depends on details
of the type system: Making it more or less powerful (i.e., more
programs typecheck) may make inference easier or harder.
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/I\/IL Type Inference \

e Determine types of bindings in order (earlier first) (except for

mutual recursion)

e For each val or fun binding, analyze the binding to determine

necessary facts about its type.

e Afterward, use type variables (e.g., ’a) for any unconstrained

types in function arguments or results.
e (One extra restriction to be discussed at the end.)

Amazing fact: For the ML type system, “going in order” this way

never causes unnecessary rejection.

[Let's walk through a few examples, doing type inference by hand.]
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/Comments on ML type inference \

e If we had subtyping, the “equality constraints” we generated

would be unnecessarily restrictive.

e |f we did not have type variables, we would not be able to give a

type to compose until we saw how it was used.

— But type variables are useful regardless of inference.
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/Parametric Polymorphism \

Fancy phrase for “forall types’ or sometimes “generics.” In ML since
mid-80s and now in Java, C#, VB, etc.

e C++ templates used similarly, but more like macros (later).

In ML, it's like there's an implicit “for all” at the beginning of any
type with ’a, ’b, etc. Example:

(’a * ’b) -> (b * ’a)
really means:

forall ’a. forall ’b. (’a * ’b) -> (’b * ’a)
(though forall is just for lecture purposes; it is not in ML)

We can instantiate the type variables to get a less general type. For
example, with string for ’a and int->int for ’b we get:

\\ (string * (int -> int)) -> ((int->int) * string) /
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/AII the types

~

In principle, we could have a very flexible way of building types:
e Base types like int, string, real, ...

e Compound types like t1 * t2, t1 -> t2, and datatypes where
t1 and t2 are any type

This would let you have types like

is always implicit and always “all the way to the outside left”, for
example this different type:

(’a => (’a * ’a)) -> ((int * int) * (bool * bool))
\faller must pick one instantiation)

e Polymorphic types like forall ’a. t where ’a can appear in t.

(forall ’a. ’a -> (’a * ’a)) -> ((int * int) * (bool * boo]

Every language has limits; in ML there is no type like this, the forall

1))
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/Example \

This code is fine, but ML disallows it to make type inference easier.

(x function f does _not_ type-check *)
fun f pairmaker = (pairmaker 7, pairmaker true)

val x = f (fn y => (y,y))
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/\/ersus Subtyping

Compare
fun swap (x,y) = (y,x) (x (Pa * ’b) > (’b * ’a) *)
with

class Pair { Object x; Object y; ... }

Pair swap(Pair pr) { return new Pair(pr.y, pr.x); }
ML wins in two ways (for this example):

e Caller instantiates types, so doesn't need to cast result

e Callee cannot return a pair of any two objects.

That's why Java added generics...
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/Java Generics

class Pair<T1,T2> {
Tl x;
T2 vy;

+

definitions) versus

-

Pair(T1 _x, T2 _y) { x=_x; y=_y; }
static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {
return new Pair<T2,T1>(pr.y,pr.x);

fun swap (x,y) = (y,x)

This really is a step forward despite the clutter (explicit types and type
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/Containers \

Parametric polymorphism (forall types) are also the right thing for
containers (lists, sets, hashtables, etc.) where elements have the same

type.
Example: ML lists

val map : ((’a -> ’b) * (’a list)) -> ’b list
val sum : int list -> int
val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

list is not a type; if t is a type, then t 1list is a type.
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val :: : (Pa * (Pa list)) -> ’a list (* infix is syntax *)




/User—defined type constructors

~

Language-design: don't provide a fixed set of a useful thing.
Let programmers declare type constructors.
Examples:

datatype ’a non_mt_list = One of ’a
| More of ’a * (’a non_mt_list)
datatype ’a rope = Empty
| Cons of ’a * (’a rope)

| Rope of (’a rope) * (’a rope)
You can have multiple type-parameters (not shown here).

And now, finally, everything about lists is syntactic sugar!
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/One last thing — not on the test

~

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (% ’a list ref x*)

val _ = x := ["hi"] (% instantiate ’a with string *)

polymorphic types if they are initialized with values.

val pr_list = List.map (fn x => (x,x))
But these all work:

val pr_list = fun 1lst => List.map (fn x => (x,x)) 1lst
fun pr_list 1lst = List.map (fn x => (x,x)) 1lst
val pr_list : int list -> (int*int) list =

\\\\ List.map (fn x => (x,x))

val = (hd(!'x)) + 7 (* instantiate ’a with int —-- bad!! x*)

To prevent this, ML has “the value restriction”: bindings can only get

Alas, that means this does not work even though it should be fine:
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