
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 11— Equivalence; Syntactic Sugar; Starting Modules

Dan Grossman CSE341 Winter 2008, Lecture 11 1



'

&

$

%

Where are we
• Today: Notions of equivalence; probably start modules

• Monday: Modules; possibly start Scheme

• Wednesday: Scheme basics

• Thursday: Scheme pragmatics; some review

• Friday: midterm

– Includes modules, but not Scheme

– You can have one side of one 8.5x11 sheet of paper

– Old midterms, etc. posted by Monday

– Will read code, write code, and write English

– Heavily biased toward later lectures because we have been

building

– (My exams are difficult; don’t panic.)

Dan Grossman CSE341 Winter 2008, Lecture 11 2



'

&

$

%

Equivalence

“Equivalence” is a fundamental programming concept

• Code maintenance (simplify code)

• Backward-compatibility (add new optional features)

• Program verification (compare to reference version)

• Program optimization (make faster without breaking it)

• Abstraction and strong interfaces (coming soon!)

But what does it mean for an expression (or program) e1 to be

“equivalent” to expression e2?

Dan Grossman CSE341 Winter 2008, Lecture 11 3



'

&

$

%

First equivalence notion

Context (i.e., “where equivalent”)

• Given where e1 occurs in a program e, replacing e1 with e2 does

not change e in any way

• At any point in any program, replacing e1 with e2 makes an

equivalent program

The latter (contextual equivalence) is much more interesting.

For the former, the body of an unused function body is equivalent to

everything (that typechecks).

Dan Grossman CSE341 Winter 2008, Lecture 11 4



'

&

$

%

Second equivalence notion

“how equivalent”

• “partial”: e1 is equivalent to e2 if for any input, any output e1
produces is what e2 produces

• “total”: partial plus e1 must terminate if and only if e2
terminates

Notice even total contextual equivalence ignores efficiency (an

exponential algorithm could be “equivalent” to a linear algorithm)

according to this definition.

Key notion: what is observable?

(For example: Is time-elapsed observable?)

Dan Grossman CSE341 Winter 2008, Lecture 11 5



'

&

$

%

Accounting for “Effects”

Consider whether fn x => e1 and fn x => e2 are totally

contextually equivalent.

Is this enough? For any environment, e1 terminates and evaluates to

v under the environment if and only if e2 terminates and evaluates to

v under the environment.

We must also consider any effects the function may have.

• Mutation, exceptions, printing, modifying files, ...

Functional languages discourage function bodies that do exactly the

things that destroy total contextual equivalence.

• For example, if you “stay functional” then (f x) + (f x) can

be replaced by (f x)*2 without consulting what f is bound to.

• (Side)-effects are often worth discouraging in any language.

Dan Grossman CSE341 Winter 2008, Lecture 11 6



'

&

$

%

Function equivalences

There are 3 very general things you can do with functions that

produce equivalent code. Recognizing them (and their subtle caveats)

can make you a better programmer.

1. Systematic renaming of variables

2. “Inlining” by replacing a function call with a body + substitutions

3. Unnecessary function wrapping

Before considering each, it will help to define carefully the notion of

free variables...

Dan Grossman CSE341 Winter 2008, Lecture 11 7



'

&

$

%

Free variables

An expression e has a set of free variables. The definition is:

• For each use of a variable, find the binding that defines that

variable. (This uses the language’s scope rules.)

• If there is a use of x that is in e whose corresponding binding is

outside e, then x is in the free variables of e.

Example:

fun f x =

let val w = x + y

val y = fn x => z + y + x

val q = w + x

in if g w then x+4 else f (x-1) end

Dan Grossman CSE341 Winter 2008, Lecture 11 8



'

&

$

%

Systematic Renaming

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

(Generally a good property of languages; callers unaffected by code

maintenance in callee.)

Dan Grossman CSE341 Winter 2008, Lecture 11 9



'

&

$

%

Scope matters

Is fn x => e1 is equivalent to fn y => e2 where e2 is e1 with every

x replaced by y?

What if e1 is y?

What if e1 is fn x => x?

Need caveats: fn x => e1 is equivalent to fn y => e2 where e2 is

e1 with every free x replaced by y. But only if y is not free in e1!

Dan Grossman CSE341 Winter 2008, Lecture 11 10



'

&

$

%

Inlining

Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every x

replaced by e2?

(Useful for simplifying or specializing code; also a way to think about

what a function call is.)

Dan Grossman CSE341 Winter 2008, Lecture 11 11



'

&

$

%

More scope mattering

Is (fn x => e1) e2 equivalent to e3 where e3 is e1 with every x

replaced by e2?

• Every free x (of course).

– Example: (fn x => (fn x => x)) 17

• A free variable in e2 must not be bound at an occurrence of x.

(Called “capture”.)

– Example: val y = 4; val z = (fn x => (fn y => x)) y

• Evaluating e2 must terminate, not do assignments, not raise

exceptions, not print, etc.

– Because in ML (but not all functional languages), e2 is

evaluated before the call

– Example: (fn x => x+x) ((print "hi";5))

• Efficiency? Could be faster or slower. (Why?)

Dan Grossman CSE341 Winter 2008, Lecture 11 12



'

&

$

%

Unnecessary Function Wrapping

A common source of bad style for beginners

Is e1 equivalent to fn x => e1 x?

Sure, provided:

• e1 effect-free (terminates, no mutation, printing, exceptions, etc.)

• x does not occur free in e1

Example:

List.map (fn x => SOME x) lst

List.map SOME lst

Notice variables, constructors, etc. are bound to values, so they are

always effect-free (the value is already computed)

Dan Grossman CSE341 Winter 2008, Lecture 11 13



'

&

$

%

Summary so far

We breezed through some core programming-language facts:

• Definition of equivalence depends on observable behavior

• Notion of free variables crucial to understanding function

equivalence.

• Three forms of function equivalence:

– Systematic Renaming

– Inlining

– Unnecessary Function Wrapping

Another notion of equivalence we have mentioned but not focused on:

syntactic sugar

Dan Grossman CSE341 Winter 2008, Lecture 11 14



'

&

$

%

Syntactic Sugar

When all expressions using one construct are totally equivalent to

another more primitive construct, we say the former is “syntactic

sugar”.

• Makes language definition easier

• Makes language implementation easier

Examples:

• e1 andalso e2 (define as a conditional)

• if e1 then e2 else e3 (define as a case)

• tuples are really records with field names 1, 2, ...

Note: The error messages used to be even worse because the

type-checker worked on a desugared version of your code.

Dan Grossman CSE341 Winter 2008, Lecture 11 15



'

&

$

%

Almost sugar

#1 e is not quite sugar because it works for pairs and triples

If we ignore types, then we have this equivalence too:

let val p = e1 in e2 end is just (fn p => e2) e1.

Dan Grossman CSE341 Winter 2008, Lecture 11 16


