
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 17— Implementing languages, especially higher-order functions

Dan Grossman CSE341 Winter 2008, Lecture 17 1



'

&

$

%

Where are we

• Today:

– Finish static vs. dynamic typing (arguments 2–5)

– Learn how closures are actually implemented (key to hw 5)

• Friday: Modularity in Scheme

• Monday: Ruby basics

• Later: More concepts and contrasts

– At least as important as programming details

– (for life and, say, the final)

Dan Grossman CSE341 Winter 2008, Lecture 17 2



'

&

$

%

Implementing Languages

Mostly 341 is about language meaning, not “how can an

implementation do that”, but it’s important to “dispel the magic”.

At super high-level, there are two ways to implement a language A:

• Write an interpreter in language B that evaluates a program in A

• Write a compiler in langage B that translates a program in A to

a program in language C (and have an implementation of C)

In theory, this is just an implementation decision.

HW5: An interpreter for mupl in Scheme.

Most interesting thing about mupl: higher-order functions.

Dan Grossman CSE341 Winter 2008, Lecture 17 3



'

&

$

%

An interpreter

A “direct” language implementation is often just writing our

evaluation rules for our language in another language.

• “eval” takes an environment and an expression and returns a value

(the subset of expressions that we define to be answers)

• “eval” uses recursion

– Example: To evaluate an addition expression, evaluate the two

subexpressions under the same environment, then...

• For homework 5, expressions & environments are all we need

– Exceptions or mutation can require more inputs/outputs to

“eval”

Dan Grossman CSE341 Winter 2008, Lecture 17 4



'

&

$

%

Implementing Higher-Order Functions

The magic: How is the “right environment” around for lexical scope

(the environment from when the function was defined)?

Lack of magic: Implementation keeps it around!

Interpreter:

• The interpreter has a “current environment”

• To evaluate a function (expression), create a closure (value), a

pair of the function and the environment.

• Application will now apply a closure to an argument: Interpret

function body, but instead of using “current environment”, use

closure’s environment extended with the argument.

Note: This is directly implementing the semantics from week 3.

Dan Grossman CSE341 Winter 2008, Lecture 17 5



'

&

$

%

Is that expensive?

Building a closure is easy; you already have the environment.

Since environments are immutable, it’s easy to share them.

Still, a given closure doesn’t need most of the environment, so for

space efficiency it can be worth it to make a new smaller environment

holding only the function’s free variables.

• Challenge problem in homework 5

Dan Grossman CSE341 Winter 2008, Lecture 17 6



'

&

$

%

Compiling Higher-Order Functions

The key to the interpreter approach: The interpreter has an explicit

environment and can “change” it to implement lexical scope.

We can also compile to a language without free variables:

Instead of an implicit environment, we pass an explicit environment to

every function.

• As with interpreter, we build a closure to evaluate functions.

• But all functions now take one extra argument.

• Application passes a closure’s code its own environment for the

extra argument.

• Evaluating variables uses this extra argument.

– Compiler translates them to environment-reads.

Plus: Lots of data-structure optimizations so variable-lookup is fast

(often a read from a known-size record).

Dan Grossman CSE341 Winter 2008, Lecture 17 7


