
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 19— Introduction to Ruby

Dan Grossman CSE341 Winter 2008, Lecture 19 1



'

&

$

%

Today

Why Ruby?

Some basics of Ruby programs

• Syntax

• Classes and Methods

• Variables, fields, scope

• The rep-loop, the main class, etc.

Dan Grossman CSE341 Winter 2008, Lecture 19 2



'

&

$

%

Ruby

• Pure object-oriented: all values are objects

• Class-based

• Dynamically typed

• Convenient reflection

A good starting point for discussing what each of these means and

what other languages look like.

dynamically typed statically typed

functional Scheme SML

object-oriented Ruby Java

Dan Grossman CSE341 Winter 2008, Lecture 19 3



'

&

$

%

Ruby vs. Smalltalk

Smalltalk, unchanged since 1980, is also pure OO, class-based,

dynamically-typed.

• Smalltalk: tiny language (smaller than Scheme), elegant, regular,

can learn whole thing

• Smalltalk: integrated into cool, malleable GUI environment

• Ruby: large language with a “why not?” attitude

• Ruby: scripting language (light syntax, some “odd” scope rules)

• Ruby: very popular, massive library support especially for strings,

regular expressions, “Ruby on Rails”

– Won’t be our focus at all

• Ruby: mixins (a cool, advanced OO modularity feature)

• Ruby: blocks, libraries encourage lots of FP idioms

Dan Grossman CSE341 Winter 2008, Lecture 19 4



'

&

$

%

Really key ideas

• Really, everything is an object (with constructor, fields, methods)

• Every object has a class, which determines how the object

responds to messages.

• Dynamic typing (everything is an object)

• Dynamic dispatch (focus of next lecture)

• Sends to self (a special identifier; Java’s this)

• Everything is “dynamic” – evaluation can add/remove classes,

add/remove methods, add/remove fields, etc.

• Blocks are almost first-class anonymous functions (later)

– Can convert to/from real lambdas (class Proc)

(Also has some more Java/C like features – loops, return, etc.)

Dan Grossman CSE341 Winter 2008, Lecture 19 5



'

&

$

%

Lack of variable declarations

If you assign to a variable in scope, it’s mutation.

If the variable is not in scope, it gets created (!)

• Scope is the method you are in

Same with fields: an object has a field if you assign to it

• So different objects of the same class can have different fields (!)

This “cuts down on typing” but catches fewer bugs (misspellings)

• A hallmark of “scripting languages” (an informal term)

Dan Grossman CSE341 Winter 2008, Lecture 19 6



'

&

$

%

Protection?

• Fields are inaccessible outside of instance

– Sugar for accessor/mutator methods

– Good OO design: subclasses can override accessors/mutators

• All classes are available to everyone

• Methods are public, protected, or private

– protected: only callable from class or subclass object

– private: only callable from self

• Namespace management, but no hiding

Dan Grossman CSE341 Winter 2008, Lecture 19 7



'

&

$

%

Unusual syntax

Just a few random things (keep your own mental list):

• Variables and fields are written differently (@ for fields)

– @@ for class fields (Java’s static fields)

• Newlines often matter — need extra semicolons to put things on

one line

• Message sends do not need parentheses (especially with 0

arguments)

• Operators like + are just message sends

• Class names must be capitalized

• self is Java’s this

• ...

Dan Grossman CSE341 Winter 2008, Lecture 19 8


