
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 24— Named Types; Polymorphism vs. Subtyping;

Polymorphism + Subtyping

Dan Grossman CSE341 Winter 2008, Lecture 24 1



'

&

$

%

Named Types

In Java/C++/C#/..., types don’t look like

{t10 m1:(t11,...), ..., tn0 mn(tn1,...)}.

Instead they look like C where C is a class or interface.

But everything we learned about subtyping still applies!

Yet the only subtyping is (the transitive closure of) declared subtypes

(e.g., class C extends D implements I,J).

• Having fewer subtypes is always sound; just allows fewer programs.

Given types D, I, and J, ensure objects produced by class C’s

constructors can have subtypes (more methods, contra/co, etc.)

Dan Grossman CSE341 Winter 2008, Lecture 24 2



'

&

$

%

Named vs. Unnamed

For preventing “message not understood”, unnamed (“structural”)

types worked fine.

But many languages have named (“nominal”) types.

Which is better is an old argument with points on both sides.

Let’s consider whether subtyping should be structural (“I have

everything you need”) or nominal (“I said I was a subtype explicitly”)...

Dan Grossman CSE341 Winter 2008, Lecture 24 3



'

&

$

%

Some Fair Points

For structural subtyping:

• Allows more code reuse, while remaining sound.

• Does not require refactoring or adding “implements clauses”

later when you discover you could share some implementation.

For nominal subtyping:

• Reject more code, which catches bugs and avoids accidental

method-name clashes.

• Confusion with classes saves keystrokes and “doing everything

twice”?

• Fewer subtypes makes type-checking and efficient code-generation

easier.

Dan Grossman CSE341 Winter 2008, Lecture 24 4



'

&

$

%

The Grand Confusion

For convenience, many languages confuse classes and types:

• C is a class and a type

• If C extends D, then:

– instances of the class C inherit from the class D

– expressions of type C can be subsumed to have type D

Do you usually want this confusion? Probably.

Do you always want “subclass implies subtype”?

• No: Consider distBetween for Point and 3DPoint.

Do you always want “subtype implies subclass”?

• No: Two classes with display methods and no inheritance

relationship.

Dan Grossman CSE341 Winter 2008, Lecture 24 5



'

&

$

%

Untangling Classes and Types

• Classes define object behavior; subclassing inherits behavior

• Subtyping defines substitutability

• Most languages require subclasses to be subtypes

Now some other common features make more sense:

• “Abstract” methods:

– Expand the supertype without providing behavior to subclass

– Superclass does not implement behavior, so no constructors

allowed (an additional static check; the class is abstract)

– The static check is the only fundamental justification

∗ Trivial to provide a method that raises an exception

∗ In Ruby, just got with message-not-understood

• Interfaces (see previous lecture)

Dan Grossman CSE341 Winter 2008, Lecture 24 6



'

&

$

%

Static Typing and Code Reuse

Key idea: Scheme and Ruby are different but not that different:

• Scheme has arbitrarily nested lexical scope (so does Ruby via

nested blocks within a method)

• Ruby has subclassing and dynamic dispatch (but easy to code up

what you need in Scheme)

Java and ML are a bit more different:

• ML has datatypes; Java has classes

• The ML default is immutable

• ML has 1st-class functions (but see Java’s inner classes)

But the key difference is the type system: ML has parametric

polymorphism. Java has subtyping with paramteric polymorphism

added on much later (combination greater than the sum of the parts)

Dan Grossman CSE341 Winter 2008, Lecture 24 7



'

&

$

%

What are “forall” types good for?

Some good uses for parametric polymorphism:

• Combining functions:

(* ((’a->’b)*(’b->’c)) -> (’a->’c) *)

fun compose (f,g) x = g (f x)

• Operating on generic container types:

isempty : (’a list) -> bool

map : ((’a list) * (’a -> ’b)) -> ’b list

• Passing private data (unnecessary with closures though):

(* (’a * ((’a * string) -> int)) -> int *)

let f (env, g) =

let val s1 = getString(37)

val s2 = getString(49)

in g(env,s1) + g(env,s2) end

Dan Grossman CSE341 Winter 2008, Lecture 24 8



'

&

$

%

Subtyping is not right here

If you try to use subtyping for the previous examples, arguments get

“upcast” results (to Object) get “downcast”.

• Inconvenient and error-prone

• Don’t get the static checks

In general, when different values can be “any type” but “the same as

each other”, you want parametric polymorphism.

Dan Grossman CSE341 Winter 2008, Lecture 24 9



'

&

$

%

What is subtyping good for?

• Passing in values with “extra” or “more useful” stuff

//can pass a Pt3D

boolean isXPos(Pt p){ return p.x > 0; }

• Passing private state like with closures

interface J { int f(int); }

class MaxEver implements J {

private int m = 0;

public int f(int i) { if(i > m) m = i; return m; }

}

Parametric polymorphism is not the right thing here (there are

sophisticated workarounds)

Dan Grossman CSE341 Winter 2008, Lecture 24 10



'

&

$

%

Wanting both

Could one language support subtyping and parametric polymorphism?

• Sure; Java and C# already do but they also let you “get around

the checks” :-(

More interestingly, you may want both at once!

A simple (?) example: Making a copy of a mutable list.

Dan Grossman CSE341 Winter 2008, Lecture 24 11


