
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman
Winter 2008

Lecture 25— Extensibility in OO and FP

Dan Grossman CSE341 Winter 2008, Lecture 25 1



'

&

$

%

You have grading to do

I am going to distribute course evaluation forms so you may rate the

quality of this course. Your participation is voluntary, and you may omit

specific items if you wish. To ensure confidentiality, do not write your

name on the forms. There is a possibility your handwriting on the yellow

written comment sheet will be recognizable; however, I will not see the

results of this evaluation until after the quarter is over and you have

received your grades. Please be sure to use a No. 2 PENCIL ONLY on

the scannable form.

I have chosen (name) to distribute and collect the forms. When you are

finished, he/she will collect the forms, put them into an envelope and

mail them to the Office of Educational Assessment. If there are no

questions, I will leave the room and not return until all the questionnaires

have been finished and collected. Thank you for your participation.

I’ll come back in 20 minutes.

Dan Grossman CSE341 Winter 2008, Lecture 25 2



'

&

$

%

One-of types and operations

• Given a type with several variants/subtypes and several
functions/methods, there’s a 2D-grid of code you need:

Int Negate Add Mult

eval

toString

hasZero

• OO and FP just lay out the code differently!!!

• Which is more convenient depends on what you’re doing and
how the variants/operations “fit together”

• Often, tools let you view “the other dimension”

• Opinion: Dimensional structure of code is greater than 2–3, so
we’ll never have exactly what we want in text.

Dan Grossman CSE341 Winter 2008, Lecture 25 3



'

&

$

%

Extensibility

Life gets interesting if need to extend code w/o changing existing
code.

• ML makes it easy to write new operations; Java does not.

• Java makes it easy to write new variants; ML does not.

• In ML the original code must plan for extensibility using
polymorphism and function arguments.

• In Java the original code must plan for extensibility using
“extra” abstract methods (see “the visitor pattern” on your
own).

Dan Grossman CSE341 Winter 2008, Lecture 25 4



'

&

$

%

Unextensibility

Extensibility is not all it’s cracked up to be:

• Makes original code more difficult to change later

• Makes code harder to reason about locally (e.g., dynamic
dispatch or functions-as-arguments mean you never know what
code might execute next)

ML and Java have different defaults, but both let you decide what
to make extensible:

• ML: Generally less extensible. Without a type constructor or a
function-argument, you limit what might happen (thanks to
closed recursion)

• Java: Generally extensible by default. But you can declare
methods or classes final; arguably under-used.

Dan Grossman CSE341 Winter 2008, Lecture 25 5


