CSE 341:
 Programming Languages

Dan Grossman
Winter 2008
Lecture 3- Let bindings, options

Let bindings

Motivation: Functions without local variables can be poor style and/or really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding. Typing rules: Type-check each bi and e in context including previous bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

- Let-expressions can appear anywhere an expression can.
- Let-expressions can have any kind of binding.
- Local functions can refer to any bindings in scope.

More than style

Exercise: hand-evaluate bad_max and good_max for lists [1,2] $[1,2,3]$, and $[3,2,1]$.

Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions
Each has a syntax, typing rules, evaluation rules.
Functions, pairs, and lists are very different, but we can describe them in the same way:

- How do you create values? (function definition, pair expressions, empty-list and : :)
- How do you use values? (function application, \#1 and \#2, null, hd, and tl)

This (and conditionals) is enough for your homework though:

- andalso and orelse help
- You need options (next slide)
- Soon: much better ways to use pairs and lists (pattern-matching)

Options

"Options are like lists that can have at most one element."

- Create a t option with NONE or SOME e where e has type t.
- Use a t option with isSome and valOf

Why not just use (more general) lists? An interesting style trade-off:

- Options better express purpose, enforce invariants on callers, maybe faster.
- But cannot use functions for lists already written.

Let bindings and nesting

Here are a couple of ML examples (of increasing complexity):
val $\mathrm{x}=[2,3,4]$;
val squid $=$ let val $\mathrm{x}=100$ in $\mathrm{x}+\mathrm{x}$ end;
What is the value of squid (and why?)
val a = 4;
val b = 10;
val clam = let val $a=100$; val $b=a+3$ in $a+b$ end;
What is the value of clam (and why?)

Let bindings and nesting continued

fun octopus (m : int, n : int) $=$ let val $\mathrm{m}=100$ in $\mathrm{m}+\mathrm{n}$ end;

What is the value of octopus $(4,5)$ (and why?)

Let bindings - Mini-exercises

What is the value of x after each of the following sequences of ML code is executed?
1.
val $\mathrm{x}=$ let val $\mathrm{y}=42$ in $\mathrm{y}+3$ end;
2.

$$
\begin{aligned}
& \text { val } x=100 ; \\
& \text { val } y=\text { let val } x=[2,3,4] \text { in } x @ x \text { end; }
\end{aligned}
$$

