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CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 4— Records, Datatypes
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Where are we

• Done features: functions, tuples, lists, local bindings

• Done concepts: syntax vs. semantics, environments, mutation-free

• Today features: record types, datatypes, case expressions

(pattern-matching)

• Today concepts: “One-of” types, constructors/destructors,

case-coverage
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Base types and compound types

Languages typically provide a small number of “built-in” types and

ways to build compound types out of simpler ones:

• Base types examples: int, bool

• Type builder examples: tuples, lists, records

Base types clutter a language definition; better to make them libraries

when possible.

• ML does this to a remarkable extent (e.g., we will soon define

away bool and conditionals)

Good to let programmers bind types to type names, just like we bind

values to variables.
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Compound-type flavors

Conceptually, just a few ways to build compound types:

1. “Each-of”: A t contains a t1 and a t2

2. “One-of”: A t contains a t1 or a t2

3. “Self-reference”: The definition of t may refer to t

Examples:

• int * bool (syntactic sugar for a record type in ML)

• int option

• int list

Remarkable: A lot of data can be described this way.

Convenient to think of as trees.

(optional) jargon: Product types, sum types, recursive types
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User-defined types

There are many reasons to define your own types:

1. Using a tuple with 12 fields is incomprehensible

2. Writing down large types is unpleasant; we have computers for

that

3. Large programs can use abstract types to be robust to change

• A couple weeks ahead

4. So the language doesn’t have to “bake in” lists and options and

. . .
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Datatype

One-of types are less similar across languages

• We’ll discuss OO’s approach to one-of in a few weeks

In ML, we make a new type with a datatype binding, e.g.:

datatype mytype = TwoInts of int*int

| Str of string

| Pizza

Semantics: Extend the environment with three constructors (in part,

functions/constants that produce values of type mytype)

So we have a way to build them... what’s missing?
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The old way

For lists, we had a way to:

• Test which variant a value was (null)

• Extract the values from value-carrying variants (hd, tl)

– Makes no sense if you have the wrong variant

What would this look like for mytype?

Dan Grossman CSE341 Winter 2008, Lecture 4 7



'

&

$

%

The new way

Rather than add variant-tests and variant-destructors (non-standard

jargon and nothing to do with C++ destructors), ML has a case

expression that uses pattern-matching.

In its simplest form, case has one pattern for each constructor in a

dataype and binds one variable for each value carried. Example:

case e of

TwoInts(i1,i2) => e1

| Str s => e2

| Pizza => e3

What are the typing rules?

What are the evaluation rules?

Patterns are not types nor expressions (despite syntactic similarity)

Dan Grossman CSE341 Winter 2008, Lecture 4 8



'

&

$

%

Type-checking case

In addition to binding local variables and requiring branches to have

the same type, the typing rules for case prevent some run-time errors:

• Exhaustiveness: No test can “fail” (a warning)

• Redundancy: No test can be “impossible” (an error)

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

• Powerful enough to define our own tests and destructors

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment (e.g.,

lists and options)

• Can use it for any type (Wednesday; also tail recursion)

• Can have deep patterns (Friday; also course motivation)
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