
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 4— Records, Datatypes

Dan Grossman CSE341 Winter 2008, Lecture 4 1



'

&

$

%

Where are we

• Done features: functions, tuples, lists, local bindings

• Done concepts: syntax vs. semantics, environments, mutation-free

• Today features: record types, datatypes, case expressions

(pattern-matching)

• Today concepts: “One-of” types, constructors/destructors,

case-coverage

Dan Grossman CSE341 Winter 2008, Lecture 4 2



'

&

$

%

Base types and compound types

Languages typically provide a small number of “built-in” types and

ways to build compound types out of simpler ones:

• Base types examples: int, bool

• Type builder examples: tuples, lists, records

Base types clutter a language definition; better to make them libraries

when possible.

• ML does this to a remarkable extent (e.g., we will soon define

away bool and conditionals)

Good to let programmers bind types to type names, just like we bind

values to variables.

Dan Grossman CSE341 Winter 2008, Lecture 4 3



'

&

$

%

Compound-type flavors

Conceptually, just a few ways to build compound types:

1. “Each-of”: A t contains a t1 and a t2

2. “One-of”: A t contains a t1 or a t2

3. “Self-reference”: The definition of t may refer to t

Examples:

• int * bool (syntactic sugar for a record type in ML)

• int option

• int list

Remarkable: A lot of data can be described this way.

Convenient to think of as trees.

(optional) jargon: Product types, sum types, recursive types

Dan Grossman CSE341 Winter 2008, Lecture 4 4



'

&

$

%

User-defined types

There are many reasons to define your own types:

1. Using a tuple with 12 fields is incomprehensible

2. Writing down large types is unpleasant; we have computers for

that

3. Large programs can use abstract types to be robust to change

• A couple weeks ahead

4. So the language doesn’t have to “bake in” lists and options and

. . .

Dan Grossman CSE341 Winter 2008, Lecture 4 5



'

&

$

%

Datatype

One-of types are less similar across languages

• We’ll discuss OO’s approach to one-of in a few weeks

In ML, we make a new type with a datatype binding, e.g.:

datatype mytype = TwoInts of int*int

| Str of string

| Pizza

Semantics: Extend the environment with three constructors (in part,

functions/constants that produce values of type mytype)

So we have a way to build them... what’s missing?

Dan Grossman CSE341 Winter 2008, Lecture 4 6



'

&

$

%

The old way

For lists, we had a way to:

• Test which variant a value was (null)

• Extract the values from value-carrying variants (hd, tl)

– Makes no sense if you have the wrong variant

What would this look like for mytype?

Dan Grossman CSE341 Winter 2008, Lecture 4 7



'

&

$

%

The new way

Rather than add variant-tests and variant-destructors (non-standard

jargon and nothing to do with C++ destructors), ML has a case

expression that uses pattern-matching.

In its simplest form, case has one pattern for each constructor in a

dataype and binds one variable for each value carried. Example:

case e of

TwoInts(i1,i2) => e1

| Str s => e2

| Pizza => e3

What are the typing rules?

What are the evaluation rules?

Patterns are not types nor expressions (despite syntactic similarity)

Dan Grossman CSE341 Winter 2008, Lecture 4 8



'

&

$

%

Type-checking case

In addition to binding local variables and requiring branches to have

the same type, the typing rules for case prevent some run-time errors:

• Exhaustiveness: No test can “fail” (a warning)

• Redundancy: No test can be “impossible” (an error)

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

• Powerful enough to define our own tests and destructors

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment (e.g.,

lists and options)

• Can use it for any type (Wednesday; also tail recursion)

• Can have deep patterns (Friday; also course motivation)

Dan Grossman CSE341 Winter 2008, Lecture 4 9


