
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 9— More function-closure idioms

Dan Grossman CSE341 Winter 2008, Lecture 9 1



'

&

$

%

Key idioms with closures

• Create similar functions

• Combine functions

• Pass functions with private data to iterators (map, fold, ...)

• Provide an abstract data type (ADT)

• As a callback without the “wrong side” specifying the

environment.

• Partially apply functions (“currying”)

Dan Grossman CSE341 Winter 2008, Lecture 9 2



'

&

$

%

Provide an ADT

A record of functions is much like an object.

Free variables are much like private, immutable fields.

Our “set” example is fancy stuff, but you should be able to understand

it even if you wouldn’t have thought to do it.

datatype set = S of {add:int -> set, member:int -> bool}

val empty_set = S {add=fn,member=fn} : set

Dan Grossman CSE341 Winter 2008, Lecture 9 3



'

&

$

%

Callbacks

A common idiom: Library takes a function to apply later, when an

event occurs (e.g., Java Swing library). Examples:

• When a key is pressed, a mouse moved, etc.

• When a packet arrives from the network

The function may be a filter (“I want the packet”), do something

(“draw a line”), etc.

Library may accept multiple callbacks. Different callbacks may need

different private state with different types.

Fortunately, a function’s type doesn’t depend on the type of free

variables.

Note: This is why Java has anonymous inner classes (for “event

listeners”).

Dan Grossman CSE341 Winter 2008, Lecture 9 4



'

&

$

%

Callback example (with mutable state!)

Library interface:

val onKeyEvent : (int -> unit) -> unit

Library implementation (mutation, but hidden from clients)

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f::(!cbs)

fun on_event i =

let fun loop l =

case l of

[] => []

| f::tl => f i; loop tl

in loop (!cbs) end

Dan Grossman CSE341 Winter 2008, Lecture 9 5



'

&

$

%

Example continued

Clients (kind of pseudocode):

onKeyEvent (fn i => write_to_log(Int.toString i

^ " got pressed\n"));

val f4_key = 75; (* no idea what it really is *)

onKeyEvent (fn i => if i=f4_key then minimizeWindow() else ());

fun prohibit_keys lst =

onKeyEvent (fn i => if (List.exists (fn j => j=i) lst)

then exitProgram()

else ());

prohibit_keys [13, 42, 99];

Key point: clients functions can use client-defined data of any type

Note: List.exists is a library function using currying...

Dan Grossman CSE341 Winter 2008, Lecture 9 6



'

&

$

%

Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we encoded n arguments by using one n-tuple argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” after someone named Curry.

Example:

val inorder3 = fn x => fn y => fn z =>

z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_non_negative = inorder3 0 0

Dan Grossman CSE341 Winter 2008, Lecture 9 7



'

&

$

%

More currying idioms

Currying is particularly convenient when creating similar functions with

iterators:

fun fold_old (f,acc,l) =

case l of

[] => acc

| hd::tl => fold_old (f, f(acc,hd), tl)

fun fold_new f = fn acc => fn l =>

case l of

[] => acc

| hd::tl => fold_new f (f(acc,hd)) tl

fun sum1 l = fold_old ((fn (x,y) => x+y), 0, l)

val sum2 = fold_new (fn (x,y) => x+y) 0

There’s even convenient syntax: fun fold_new f acc l = ...

Dan Grossman CSE341 Winter 2008, Lecture 9 8



'

&

$

%

Back to List.exists

fun exists predicate lst =

case lst of

[] => false

| hd::tl => predicate hd orelse exists predicate tl

Example clients:

fun has_seventeen1 lst = exists (fn x => x=17) lst

val has_seventeen2 = exists (fn x => x=17)

fun make_has_n n = exists (fn x => x=n)

val has_seventeen3 = make_has_n 17

Dan Grossman CSE341 Winter 2008, Lecture 9 9



'

&

$

%

Currying vs. Tuples

Currying is more elegant than tuples, but still a bit backward: the

function writer chooses which partial application is most convenient.

Of course, it’s easy to write wrapper functions:

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

If you look at the types of these functions, you can get a very good

idea of what they do.

Dan Grossman CSE341 Winter 2008, Lecture 9 10



'

&

$

%

Function-Call Efficiency

First: Function calls take constant (O(1)) time, so until you’re using

the right algorithms and have a critical bottleneck, forget about it.

That said, ML’s “all functions take one argument” can be inefficient in

general:

• Create a new n-tuple

• Create a new function closure

In practice, implementations optimize common cases. In some

implementations, n-tuples are faster (avoid building the tuple). In

others, currying is faster (avoid building intermediate closures).

In the < 1 percent of code where detailed efficiency matters, you

program against an implementation. Bad programmers worry about

this stuff at the wrong stage and for the wrong code.

Dan Grossman CSE341 Winter 2008, Lecture 9 11


