CSE 341:
Programming Languages

Dan Grossman
Winter 2008
Lecture 9— More function-closure idioms

-

Dan Grossman CSE341 Winter 2008, Lecture 9

/Key iIdioms with closures

-

Create similar functions
Combine functions

Pass functions with private data to iterators (map, fold, ...)

Provide an abstract data type (ADT)

As a callback without the “wrong side” specifying the

environment.

Partially apply functions (“currying”)

Dan Grossman CSE341 Winter 2008, Lecture 9

/Provide an ADT

~

A record of functions is much like an object.

Free variables are much like private, immutable fields.

it even if you wouldn't have thought to do it.

val empty_set = S {add=fn,member=fn} : set

-

Our “set” example is fancy stuff, but you should be able to understand

datatype set = S of {add:int -> set, member:int -> bool}

Dan Grossman CSE341 Winter 2008, Lecture 9

/Callbacks

A common idiom: Library takes a function to apply later, when an
event occurs (e.g., Java Swing library). Examples:

e When a key is pressed, a mouse moved, etc.
e When a packet arrives from the network

The function may be a filter (“l want the packet”), do something
(“draw a line"), etc.

Library may accept multiple callbacks. Different callbacks may need
different private state with different types.

Fortunately, a function’s type doesn’'t depend on the type of free
variables.

Note: This is why Java has anonymous inner classes (for “event

\isteners”).

Dan Grossman CSE341 Winter 2008, Lecture 9 4

/Callback example (with mutable state!) \

Library interface:
val onKeyEvent : (int -> unit) -> unit
Library implementation (mutation, but hidden from clients)

val cbs : (int -> unit) list ref = ref []
fun onKeyEvent f = cbs := f::(!cbs)
fun on_event 1 =
let fun loop 1 =
case 1 of
(1 => [
| £::t1 => f i; loop tl

in loop (!cbs) end

- /

Dan Grossman CSE341 Winter 2008, Lecture 9 5

/Example continued

~

Clients (kind of pseudocode):

onKeyEvent (fn i => write_to_log(Int.toString i
= " got pressed\n"));

val f4_key = 75; (* no idea what it really is *)

fun prohibit_keys 1lst =

then exitProgram()
else 0);
prohibit_keys [13, 42, 99];

Key point: clients functions can use client-defined data of any type

\\Note: List.exists is a library function using currying...

onKeyEvent (fn i => if i=f4_key then minimizeWindow() else

onKeyEvent (fn i => if (List.exists (fn j => j=i) 1st)

/

Dan Grossman CSE341 Winter 2008, Lecture 9 6

));

/Partial application (“currying”) \

Recall every function in ML takes exactly one argument.
Previously, we encoded m arguments by using one n-tuple argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” after someone named Curry.
Example:

val inorder3 = fn x => fn y => fn z =>
z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_non_negative = inorder3 0 O

- /

Dan Grossman CSE341 Winter 2008, Lecture 9 7

/I\/Iore currying idioms \

Currying is particularly convenient when creating similar functions with

Iiterators:

fun fold_old (f,acc,l) =
case 1 of
[] => acc
| hd::tl => fold_old (f, f(acc,hd), tl)
fun fold_new f = fn acc => fn 1 =>
case 1 of
[] => acc
| hd::tl => fold_new f (f(acc,hd)) tl
fun suml 1 = fold_old ((fn (x,y) => x+y), 0, 1)
val sum2 = fold_new (fn (x,y) => x+y) O

There's even convenient syntax: fun fold_new f acc 1 = ... /

.

Dan Grossman CSE341 Winter 2008, Lecture 9 8

/Back to List.exists \

fun exists predicate 1lst =

case 1lst of
[] => false
| hd::tl => predicate hd orelse exists predicate tl

Example clients:

fun has _seventeenl 1lst = exists (fn x => x=17) 1lst
val has _seventeen2 = exists (fn x => x=17)
fun make has n n = exists (fn x => x=n)

val has_seventeen3 = make_has n 17

- /

Dan Grossman CSE341 Winter 2008, Lecture 9 9

/Currying vs. Tuples \

Currying is more elegant than tuples, but still a bit backward: the

function writer chooses which partial application is most convenient.

Of course, it's easy to write wrapper functions:

fun other_curryl f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry £f xy = £ (x,y)

fun uncurry f (x,y) = f xy

If you look at the types of these functions, you can get a very good
idea of what they do.

- /

Dan Grossman CSE341 Winter 2008, Lecture 9 10

/Function—CaII Efficiency \

First: Function calls take constant (O(1)) time, so until you're using
the right algorithms and have a critical bottleneck, forget about it.

That said, ML's “all functions take one argument” can be inefficient in

general:
e Create a new n-tuple
e Create a new function closure

In practice, implementations optimize common cases. In some
implementations, n-tuples are faster (avoid building the tuple). In
others, currying is faster (avoid building intermediate closures).

In the < 1 percent of code where detailed efficiency matters, you
program against an implementation. Bad programmers worry about

\ihis stuff at the wrong stage and for the wrong code. /

Dan Grossman CSE341 Winter 2008, Lecture 9 11

