
CSE 341, Winter 2008, Lecture 9 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of

all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

We continue describing programming idioms enabled by function closures.

Implementing an Abstract Data Type

The key to an abstract data type is requiring clients to use it via a collection of functions rather than
directly accessing its private state. Thanks to this abstraction, we can later change how the data type
is implemented without changing how it behaves for clients. In an object-oriented language, you might
implement an abstract data type be defining a class with all private fields (inaccessible to clients) and some
public methods (the interface with clients). We can do the same thing in ML with a record of closures;
the variables that the closures use from the environment correspond to the private fields. Admittedly,
this programming idiom can appear very fancy/clever/subtle, but it suggests (correctly) that functional
programming and object-oriented programming are more similar than they might first appear (a topic we
will revisit later in the course; there are important differences).

As an example, consider an implementation of a set of integers that supports creating a new bigger set
and seeing if an integer is in a set. Our sets are mutation-free in the sense that adding an integer to a set
produces a new, different set. In ML, we could define a type that describes this interface:

datatype set = S of { add : int -> set, member : int -> bool }

Roughly speaking, a set is a record with two fields, each of which holds a function. It would be simpler to
write:

type set = { add : int -> set, member : int -> bool }

but this does not work in ML because type bindings cannot be recursive. So we have to deal with the
mild inconvenience of having a constructor S around our record of functions defining a set. Notice we are
not using any new types or features; we simply have a type describing a record with fields named add and
member, each of which holds a function.

Once we have an empty set, we can use its add field to create a one-element set, and then use that set’s
add field to create a two-element set and so on. So the only other thing our interface needs is a binding like
this:

val empty_set = ... : set

Before implementing this interface, let’s see how a client might use it:

fun use_a_set () =
let val S s1 = empty_set

val S s2 = (#add s1) 34
val S s3 = (#add s2) 19

in
if (#member s3) 42
then 99
else if (#member s3) 19
then 17
else 0

end

Again we are using no new features. #add s1 is reading a record field, which in this case produces a function
that we can then call with 34. If we were in Java, we might write s1.add(34) to do something similar. The
val bindings use pattern-matching to “get rid of” the S constructors on values of type set.

There are many ways we could define empty_set; they will all use the technique of using a closure to
“remember” what elements a set has. Here is one way:

1



val empty_set =
let fun exists(j,lst) = (* could use currying and/or fold to be fancier *)

case lst of
[] => false

| hd::tl => j=hd orelse exists(j,tl)
fun make_set lst = (* lst is a "private field" *)

S { add = fn i => make_set (i::lst),
member = fn i => exists (i,lst) }

in
make_set []

end

The helper function exists just sees if a list has an element; we could also just use List.exists in the
standard library. All the fanciness is in make_set and empty_set is just the record returned by make_set [].
What make_set returns is a value of type set. It is essentially a record with two functions. The closures
produced from fn i => make_set (i::lst) and fn i => exists (i,lst) are values that when called use
lst — which is the “private field” we need to produce either a bool (for member) or a new set (for add).

Callbacks

Another common idiom is to implement a library that detects when “events” occur and informs clients
that have previously “registered” their interest in hearing about events. Clients can register their interest
by providing a “callback” — a function that gets called when the event occurs. Examples of events for
which you might want this sort of library include things like users moving the mouse or pressing a key. Data
arriving from a network interface is another example.

The purpose of these libraries is to allow multiple clients to register callbacks. The library implementer
has no idea what clients need to compute when an event occurs, and the clients may need “extra data” to
do the computation. So the library implementor should not restrict what “extra data” each client uses. A
closure is ideal for this because a function’s type t1 -> t2 doesn’t specify the types of any other variables
a closure uses, so we can put the “extra data” in the closure’s environment.

If you have used “event listeners” in Java’s Swing library, then you have used this idiom in an object-
oriented setting. In Java, you get “extra data” by defining a subclass with additional fields. This can take
an awful lot of keystrokes for a simple listener, which is a (the?) main reason the Java language added
anonymous inner classes (which you do not need to know about for this course), which are closer to the
convenience of closures.

To see an example in ML, we will finally introduce ML’s support for mutation. Mutation is okay in some
settings. In this case, we really do want registering a callback to “change the state of the world” — when
an event occurs, there are now more callbacks to invoke. In ML, most things really cannot be mutated.
Instead you must create a reference, which is a container whose contents can be changed. You create a new
reference with the expression ref e (the initial contents are the result of evaluating e). You get a reference
r’s current contents with !r (not to be confused with negation in Java or C), and you change r’s contents
with r := e. The type of a reference that contains values of type t is written t ref.

Our example will use the idea that callbacks should be called when a key on the keyboard is pressed.
We will pass the callbacks an int that encodes which key it was. Our interface just needs a way to register
callbacks. (In a real library, you might also want a way to unregister them.)

val onKeyEvent : (int -> unit) -> unit

Clients will pass a int -> unit that, when called later with an int will do whatever they want. To
implement this function, we just use a reference that holds a list of the callbacks. Then when an event
actually occurs, we assume the function on_event is called and it calls each callback in the list:

val cbs : (int -> unit) list ref = ref []
fun onKeyEvent f = cbs := f::(!cbs)
fun on_event i =

2



let fun loop l =
case l of
[] => []

| f::tl => f i; loop tl
in loop (!cbs) end

Most importantly, the type of onKeyEvent places no restriction on what extra data a callback can access
when it is called. Here are three different clients (calls to onKeyEvent that use different variables in functions
in their environment:

onKeyEvent (fn i => write_to_log(Int.toString i
^ " got pressed\n"));

val f4_key = 75; (* no idea what it really is *)
onKeyEvent (fn i => if i=f4_key then minimizeWindow() else ());

fun prohibit_keys lst =
onKeyEvent (fn i => if (List.exists (fn j => j=i) lst)

then exitProgram()
else ());

prohibit_keys [13, 42, 99];

We describe the List.exists library function below.

Partial application (“currying”)

The final idiom we consider is very convenient, especially when defining and using iterators over data
structures (see last lecture). We have already seen that in ML every function takes exactly one argument, so
you have to use an idiom to get the effect of multiple arguments. Previously we have done this by passing a
tuple as the one argument, so each part of the tuple is conceptually one of the multiple arguments. Another
more clever and often more convenient way is to have a function take the first conceptual argument and
return another function that takes the second conceptual argument and so on.

This technique is called “currying” because someone named Curry was a researcher who studied the idea.
Here is an example of a “3-argument” function that uses currying:

val inorder3 = fn x => fn y => fn z =>
z >= y andalso y >= x

If we call inorder3 4 we will get a closure that has x in its environment. If we then call this closure with 5,
we get a closures that has x and y in its environment. If we then call this closure with 6, we will get true
because 6 is greater than 5 and 5 is greater than 4. That is just how closures work.

So ((inorder3 4) 5) 6 computes exactly what we want and feels pretty close to calling inorder3
with 3 arguments. Even better, the parentheses are optional, so we can write exactly the same thing as
inorder3 4 5 6, which is actually fewer non-space characters than our old tuple approach where we would
have:

fun inorder3 (x,y,z) = z >= y andalso y >= x
val someClient = inorder3(4,5,6)

Moreover, even though we might expect most clients of our curried inorder3 to provide all 3 conceptual
arguments, they might provide fewer and use the resulting closure later. This is called “partial application”
because we are providing a subset (more precisely, a prefix) of the conceptual argument. As a silly example,
inorder3 0 0 returns a function that returns true if its argument is nonnegative.

Currying is particularly convenient for creating similar functions with iterators. For example, here is a
curried version of a fold function for lists:

3



fun fold f = fn acc => fn l =>
case l of
[] => acc

| hd::tl => fold f (f(acc,hd)) tl

Now we could use this fold to define a function that sum’s a list elements like this:

fun sum1 l = fold ((fn (x,y) => x+y) 0 l

But that is unnecessarily complicated compared to just using partial application:

val sum2 = fold (fn (x,y) => x+y) 0

The convenience of partial application is why many iterators in ML’s standard library use currying with the
function they take as the first argument.

There is syntactic sugar for defining curried functions; you can just separate the conceptual arguments
by spaces rather than using anonymous functions. So the better style for our fold function would be:

fun fold f acc l =
case l of
[] => acc

| hd::tl => fold f (f(acc,hd)) tl

In our callback example, we used a library function List.exists, which uses currying. That is why
its two conceptual arguments were separated by spaces. While it is good to use library functions where
convenient, exists is quite easy to implement ourselves:

fun exists predicate lst =
case lst of
[] => false

| hd::tl => predicate hd orelse exists predicate tl

Sometimes functions are curried but the arguments are not in the order you want for a partial application.
Or sometimes a function is curried when you want it to use tuples or vice-versa. Fortunately our earlier
idiom of combining functions can take functions using one approach and produce functions using another:

fun other_curry1 f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry f x y = f (x,y)
fun uncurry f (x,y) = f x y

Looking at the types of these functions can help you understand what they do. As an aside, the types are
also fascinating because if you pronounce -> as “implies” and * as “and”, the types of all these functions
are logical tautologies.

Finally, you might wonder which is faster, currying or tupling. It almost never matters; they both do
work proportional to the number of conceptual arguments, which is typically quite small. For the one or two
performance-critical functions in your software, it might matter to pick the faster way. In the version of the
ML compiler we are using, tupling happens to be faster. In other implementations of ML, curried functions
are faster.

4


