
'

&

$

%

A Bit of History

Some notable examples of early object-oriented languages and systems:

• Sketchpad (Ivan Sutherland’s 1963 PhD dissertation) was the first

system to use classes and instances (although Sketchpad is an

application, not a programming language)

• First object-oriented programming language: Simula I, then

Simula 67, created by Ole-Johan Dahl and Kristen Nygaard at the

Norwegian Computing Center in Oslo.

• Smalltalk: developed at Xerox Palo Alto Research Center by the

Learning Research Group in the 1970’s (Smalltalk-72,

Smalltalk-76, Smalltalk-80)

• Today: mature language paradigm. Some significant examples:

C++, Java, C#, Python, Ruby.

Alan Borning CSE341 Winter 2009 1

'

&

$

%

Ruby

Why Ruby?

Some basics of Ruby programs

• Syntax

• Classes, Methods

• Variables, fields, scope

• Dynamic typing

• The rep-loop, the main class, etc.

Note: Read Thomas book chapters 1–9 (or free first edition 1–8)

• Skip/skim regexps and ranges

• Not every detail: focus on OO, dynamic typing, blocks, mixins

Alan Borning CSE341 Winter 2009 2

'

&

$

%

Principal Properties of Ruby

• Pure object-oriented: all values are objects

• Class-based

• Dynamically typed

• Convenient reflection

A good starting point for discussing what each of these means and

what other languages look like.

dynamically typed statically typed

functional Scheme Haskell

object-oriented Ruby Java

Alan Borning CSE341 Winter 2009 3

'

&

$

%

Ruby vs. Smalltalk

Smalltalk: language definition unchanged since 1980 (although lots of

work on the environment and packages), is also pure OO, class-based,

dynamically-typed.

• Smalltalk: tiny language (smaller than Scheme), elegant, regular,

can learn whole thing

• Smalltalk: integrated into cool, malleable GUI environment

• Ruby: large language with a “why not?” attitude

• Ruby: scripting language (light syntax, some “odd” scope rules)

• Ruby: very popular, massive library support especially for strings,

regular expressions, “Ruby on Rails.” Won’t be our focus at all.

• Ruby: mixins (a cool, advanced OO modularity feature)

• Ruby: blocks, libraries encourage lots of FP idioms

Alan Borning CSE341 Winter 2009 4

'

&

$

%

Really key ideas

• Really, everything is an object (with constructor, fields, methods)

• Every object has a class, which determines how the object

responds to messages.

• Dynamic typing (everything is an object)

• Dynamic dispatch

• Sends to self (a special identifier; Java’s this)

• Everything is “dynamic” – evaluation can add/remove classes,

add/remove methods, add/remove fields, etc.

• Blocks are almost first-class anonymous functions (later)

– Can convert to/from real lambdas (class Proc)

(Also has some more Java/C like features – loops, return, etc.)

Alan Borning CSE341 Winter 2009 5

'

&

$

%

Lack of variable declarations

If you assign to a variable in scope, it’s mutation.

If the variable is not in scope, it gets created (!)

• Scope is the method you are in

Same with fields: an object has a field if you assign to it

• So different objects of the same class can have different fields (!)

This “cuts down on typing” but catches fewer bugs (misspellings)

• A hallmark of “scripting languages” (an informal term)

Alan Borning CSE341 Winter 2009 6

'

&

$

%

Protection?

• Fields are inaccessible outside of instance

– Define accessor/mutator methods as desired

∗ Use attr_read and attr_writer

– Good OO design: subclasses can override accessors/mutators

• Methods are public, protected, or private

– protected: only callable from class or subclass object

– private: only callable from self

• Later: namespace management, but no hiding

Alan Borning CSE341 Winter 2009 7

'

&

$

%

Unusual syntax

Just a few random things (keep your own mental list):

• Variables and fields are written differently

– @ for fields

– @@ for class fields (Java’s static fields)

• Newlines often matter — need extra semicolons, colons, etc. to

put things on one line

• Message sends do not need parentheses (especially with 0

arguments)

• Operators like + are just message sends

• Class names must be capitalized

Alan Borning CSE341 Winter 2009 8

'

&

$

%

Duck Typing

“If it walks like a duck and quacks like a duck, it’s a duck.”

A method might think, “I need an Octopus” but really it only needs

an object that has similar enough methods that it acts enough like a

Octopus that the method works.

Embracing duck typing: Methods that make method calls rather than

assume the class of their argument.

Plus: More code reuse, very OO approach

• What messages can some object receive is all that matters

Minus: Almost nothing is equivalent

• x+x versus x*2 versus 2*x

• Callees may not want callers assuming so much

Alan Borning CSE341 Winter 2009 9

'

&

$

%

Blocks and Iterators

Many methods in Ruby “take a block,” which is a “special” thing

separate from the argument list.

They are used very much like closures in functional programming; can

take 0 or more arguments (see examples)

The preferred way for iterating over arrays, doing something n times,

etc.

They really are closures (can access local variables where they were

defined).

Useful on homework: each, possibly inject

Useful in Ruby: many, many more

Alan Borning CSE341 Winter 2009 10

'

&

$

%

Blocks vs. Procs
These block arguments can be used only by the “immediate” callee via

the yield keyword.

If you really want a “first-class object” you can pass around, store in

fields, etc., convert the block to an instance of Proc.

• lambda {|x,y,z| e}

• Instances of Proc have a method call

• This really is exactly a closure.

Actually, there is a way for the caller to pass a block and the callee

convert it to a Proc.

• Look it up if you’re curious.

• This is what lambda does

(just a method in Object that returns the Proc it creates)

Alan Borning CSE341 Winter 2009 11

'

&

$

%

Subclasses

Ruby is dynamically typed, so subclassing is not about what

type-checks.

Subclassing is about inheriting methods from the superclass.

• In Java, it’s about inheriting fields too, but we can just write to

any field we want.

Example: ThreeDPoint inherits methods x and y.

Example: ColorPoint inherits distFromOrigin and

distFromOrigin2.

Alan Borning CSE341 Winter 2009 12

'

&

$

%

Overriding

If it were just inheritance, then with dynamic typing subclassing would

just be avoiding copy/paste.

It’s more.

But first, “simple” overriding lets us redefine methods in the subclass.

• Often convenient to use super to use superclass definition in our

definition.

This is still “just” avoiding copy-paste.

Example: distFromOrigin and initialize in ThreeDPoint.

Alan Borning CSE341 Winter 2009 13

'

&

$

%

Ruby-ish Digression

Why make a subclass when we could just add/change methods to the

class itself?

• Add a color field to Point itself

• Affects all Point instances, even those already created (!)

Plus: Now a ThreeDPoint has a color field too.

Minus: Maybe that messes up another part of your program.

Fun example: Redefining Fixnum’s + to return 5.

Alan Borning CSE341 Winter 2009 14

'

&

$

%

Late-Binding

So far, this OO stuff is very much like functional programming

• Fields are just like things in a closure’s environment (remember

simulating objects in Scheme)

But this is totally different:

• When a method defined in a superclass makes a self call it

resolves to the method defined in the subclass (typically via

overriding)

Example: distFromOrigin2 in PolarPoint still works correctly!!!

Coming up soon: Studying this very carefully.

Alan Borning CSE341 Winter 2009 15

