
CSE341: Programming Languages

Lecture 9

Function-Closure Idioms

Dan Grossman

Fall 2011

More idioms

• We know the rule for lexical scope and function closures

– Now what is it good for

A partial but wide-ranging list:

• Pass functions with private data to iterators: Done

• Combine functions (e.g., composition)

• Currying (multi-arg functions and partial application)

• Callbacks (e.g., in reactive programming)

• Implementing an ADT with a record of functions

Fall 2011 2 CSE341: Programming Languages

Combine functions

Canonical example is function composition:

• Creates a closure that “remembers” what g and h are bound to

• Type ('b -> 'c) * ('a -> 'b) -> ('a -> 'c)

but the REPL prints something equivalent

• ML standard library provides this as infix operator o

• Example (third version best):

Fall 2011 3 CSE341: Programming Languages

fun compose (g,h) = fn x => g (h x)

fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i))

fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

Left-to-right or right-to-left

As in math, function composition is “right to left”

– “take absolute value, convert to real, and take square root”

– “square root of the conversion to real of absolute value”

“Pipelines” of functions are common in functional programming and

many programmers prefer left-to-right

– Can define our own infix operator

– This one is very popular (and predefined) in F#

Fall 2011 4 CSE341: Programming Languages

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

infix |>

fun x |> f = f x

fun sqrt_of_abs i =

 i |> abs |> Real.fromInt |> Math.sqrt

Another example

• “Backup function”

• As is often the case with higher-order functions, the types hint at

what the function does

 ('a -> 'b option) * ('a -> 'b) -> 'a -> 'b

• More examples later to “curry” and “uncurry” functions

Fall 2011 5 CSE341: Programming Languages

fun backup1 (f,g) =

 fn x => case f x of

 NONE => g x

 | SOME y => y

Currying and Partial Application

• Recall every ML function takes exactly one argument

• Previously encoded n arguments via one n-tuple

• Another way: Take one argument and return a function that

takes another argument and…

– Called “currying” after famous logician Haskell Curry

• Example, with full and partial application:

– Notice relies on lexical scope

Fall 2011 6 CSE341: Programming Languages

val sorted3 = fn x => fn y => fn z =>

 z >= y andalso y >= x

val true_ans = ((sorted3 7) 9) 11

val is_non_negative = (sorted3 0) 0

Syntactic sugar

Currying is much prettier than we have indicated so far

– Can write e1 e2 e3 e4 in place of ((e1 e2) e3) e4

– Can write fun f x y z = e in place of

 fun f x = fn y => fn z => e

Result is a little shorter and prettier than the tupled version:

Fall 2011 7 CSE341: Programming Languages

fun sorted3 x y z = z >= y andalso y >= x

val true_ans = sorted3 7 9 11

val is_non_negative = sorted3 0 0

fun sorted3 (x,y,z) = z >= y andalso y >= x

val true_ans = sorted3(7,9,11)

fun is_non_negative x = sorted3(0,0,x)

Return to the fold 

In addition to being sufficient multi-argument functions and pretty,

currying is useful because partial application is convenient

Example: Often use higher-order functions to create other functions

Fall 2011 8 CSE341: Programming Languages

fun fold f acc xs =

 case xs of

 [] => acc

 | x::xs’ => fold f (f(acc,x)) xs’

fun sum_ok xs = fold (fn (x,y) => x+y) 0 xs

val sum_cool = fold (fn (x,y) => x+y) 0

The library’s way

• So the SML standard library is fond of currying iterators

– See types for List.map, List.filter, List.foldl, etc.

– So calling them as though arguments are tupled won’t work

• Another example is List.exists:

Fall 2011 9 CSE341: Programming Languages

fun exists predicate xs =

 case xs of

 [] => false

 | x::xs’ => predicate xs

 orelse exists predicate xs’

val no = exists (fn x => x=7) [4,11,23]

val has_seven = exists (fn x => x=7)

Another example

Currying and partial application can be convenient even without

higher-order functions

Fall 2011 10 CSE341: Programming Languages

fun zip xs ys =

 case (xs,ys) of

 ([],[]) => []

 | (x::xs’,y::ys’) => (x,y)::(zip xs’ ys’)

 | _ => raise Empty

fun range i j =

 if i>j then [] else i :: range (i+1) j

val countup = range 1 (* partial application *)

fun add_number xs = zip (countup (length xs)) xs

More combining functions

• What if you want to curry a tupled function or vice-versa?

• What if a function’s arguments are in the wrong order for the

partial application you want?

Naturally, it’s easy to write higher-order wrapper functions

– And their types are neat logical formulas

Fall 2011 11 CSE341: Programming Languages

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

The Value Restriction Appears 

If you use partial application to create a polymorphic function, it

may not work due to the value restriction

– Warning about “type vars not generalized”

• And won’t let you call the function

– This should surprise you; you did nothing wrong  but you

still must change your code

– See the written lecture summary about how to work around

this wart (and ignore the issue until it arises)

– The wart is there for good reasons, related to mutation and

not breaking the type system

– More in the lecture on type inference

Fall 2011 12 CSE341: Programming Languages

Efficiency

So which is faster: tupling or currying multiple-arguments?

• They are both constant-time operations, so it doesn’t matter in

most of your code – “plenty fast”

– Don’t program against an implementation until it matters!

• For the small (zero?) part where efficiency matters:

– It turns out SML NJ compiles tuples more efficiently

– But many other functional-language implementations do

better with currying (OCaml, F#, Haskell)

• So currying is the “normal thing” and programmers read
t1 -> t2 -> t3 -> t4 as a 3-argument function

Fall 2011 13 CSE341: Programming Languages

Callbacks

A common idiom: Library takes functions to apply later, when an

event occurs – examples:

– When a key is pressed, mouse moves, data arrives

– When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks

– Different callbacks may need different private data with

different types

– Fortunately, a function’s type does not include the types of

bindings in its environment

– (In OOP, objects and private fields are used similarly, e.g.,

Java Swing’s event-listeners)

Fall 2011 14 CSE341: Programming Languages

Mutable state

While it’s not absolutely necessary, mutable state is reasonably

appropriate here

– We really do want the “callbacks registered” and “events that

have been delivered” to change due to function calls

For the reasons we have discussed, ML variables really are

immutable, but there are mutable references (use sparingly)

– New types: t ref where t is a type

– New expressions:

• ref e to create a reference with initial contents e

• e1 := e2 to update contents

• !e to retrieve contents (not negation)

Fall 2011 15 CSE341: Programming Languages

References example

Fall 2011 16 CSE341: Programming Languages

val x = ref 42

val y = ref 42

val z = x

val _ = x := 43

val w = (!y) + (!z) (* 85 *)

(* x + 1 does not type-check)

• A variable bound to a reference (e.g., x) is still immutable: it will

always refer to the same reference

• But the contents of the reference may change via :=

• And there may be aliases to the reference, which matter a lot

• Reference are first-class values

• Like a one-field mutable object, so := and ! don’t specify the field

Example call-back library

Library maintains mutable state for “what callbacks are there” and

provides a function for accepting new ones

– A real library would support removing them, etc.

– In example, callbacks have type int->unit (executed for

side-effect)

So the entire public library interface would be the function for

registering new callbacks:

val onKeyEvent : (int -> unit) -> unit

Fall 2011 17 CSE341: Programming Languages

Library implementation

Fall 2011 18 CSE341: Programming Languages

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f :: (!cbs)

fun onEvent i =

 let fun loop fs =

 case fs of

 [] => ()

 | f::fs’ => (f i; loop fs’)

 in loop (!cbs) end

Clients

Can only register an int -> unit, so if any other data is needed,

must be in closure’s environment

– And if need to “remember” something, need mutable state

Examples:

Fall 2011 19 CSE341: Programming Languages

val timesPressed = ref 0

val _ = onKeyEvent (fn _ =>

 timesPressed := (!timesPressed) + 1)

fun printIfPressed i =

 onKeyEvent (fn _ =>

 if i=j

 then print ("pressed " ^ Int.toString i)

 else ())

Implementing an ADT

As our last pattern, closures can implement abstract datatypes

– Can put multiple functions in a record

– They can share the same private data

– Private data can be mutable or immutable (latter preferred?)

– Feels quite a bit like objects, emphasizing that OOP and

functional programming have similarities

See lec9.sml for an implementation of immutable integer sets with

operations insert, member, and size

The actual code is advanced/clever/tricky, but has no new features

– Combines lexical scope, datatypes, records, closures, etc.

– Client use is not so tricky

Fall 2011 20 CSE341: Programming Languages

