
CSE 341
 Programming Languages

Dynamic Dispatch vs. Closures

OOP vs. Functional Decomposition
Wrapping Up

Zach Tatlock
Spring 2014

Dynamic dispatch

Dynamic dispatch
–  Also known as late binding or virtual methods

–  Call self.m2() in method m1 defined in class C can
resolve to a method m2 defined in a subclass of C

–  Most unique characteristic of OOP

Need to define the semantics of method lookup as carefully as we
defined variable lookup for our PLs

2

Review: variable lookup

Rules for “looking things up” is a key part of PL semantics

•  ML: Look up variables in the appropriate environment
–  Lexical scope for closures
–  Field names (for records) are different: not variables

•  Racket: Like ML plus let, letrec

•  Ruby:
–  Local variables and blocks mostly like ML and Racket
–  But also have instance variables, class variables, methods

(all more like record fields)
•  Look up in terms of self, which is special

3

Using self

•  self maps to some “current” object

•  Look up instance variable @x using object bound to self

•  Look up class variables @@x using object bound to self.class

•  Look up methods…

4

Ruby method lookup
The semantics for method calls also known as message sends

e0.m(e1,…,en)
1.  Evaluate e0, e1, …, en to objects obj0, obj1, …, objn

–  As usual, may involve looking up self, variables, fields, etc.
2.  Let C be the class of obj0 (every object has a class)
3.  If m is defined in C, pick that method, else recur with the superclass

of C unless C is already Object
–  If no m is found, call method_missing instead

•  Definition of method_missing in Object raises an error
4.  Evaluate body of method picked:

–  With formal arguments bound to obj1, …, objn
–  With self bound to obj0 -- this implements dynamic dispatch!

5

Punch-line again

e0.m(e1,…,en)

To implement dynamic dispatch, evaluate the method body with
self mapping to the receiver (result of e0)

•  That way, any self calls in body of m use the receiver's class,

–  Not necessarily the class that defined m

•  This much is the same in Ruby, Java, C#, Smalltalk, etc.

6

Comments on dynamic dispatch

•  This is why distFromOrigin2 worked in PolarPoint

•  More complicated than the rules for closures
–  Have to treat self specially
–  May seem simpler only if you learned it first
–  Complicated does not necessarily mean inferior or superior

7

Static overloading

In Java/C#/C++, method-lookup rules are similar, but more
complicated because > 1 methods in a class can have same name

–  Java/C/C++: Overriding only when number/types of
arguments the same

–  Ruby: same-method-name always overriding

Pick the “best one” using the static (!) types of the arguments

–  Complicated rules for “best”
–  Type-checking error if there is no “best”

Relies fundamentally on type-checking rules
–  Ruby has none

8

A simple example, part 1
In ML (and other languages), closures are closed

So we can shadow odd, but any call to the closure bound to odd
above will “do what we expect”

–  Does not matter if we shadow even or not

9

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

(* does not change odd – too bad; this would
improve it *)

fun even x = (x mod 2)=0

(* does not change odd – good thing; this would
break it *)

fun even x = false

A simple example, part 2
In Ruby (and other OOP languages), subclasses can change the
behavior of methods they do not override

10

class A
 def even x
 if x==0 then true else odd (x-1) end
 end
 def odd x
 if x==0 then false else even (x-1) end
 end
end
class B < A # improves odd in B objects
 def even x ; x % 2 == 0 end
end
class C < A # breaks odd in C objects
 def even x ; false end
end

The OOP trade-off

Any method that makes calls to overridable methods can have its
behavior changed in subclasses even if it is not overridden

–  Maybe on purpose, maybe by mistake
–  Observable behavior includes calls-to-overridable methods

•  So harder to reason about “the code you're looking at”

–  Can avoid by disallowing overriding
•  “private” or “final” methods

•  So easier for subclasses to affect behavior without copying code
–  Provided method in superclass is not modified later

11

12

DECOMPOSITION

Breaking things down

•  In functional (and procedural) programming, break programs
down into functions that perform some operation

•  In object-oriented programming, break programs down into
classes that give behavior to some kind of data

This lecture:

–  These two forms of decomposition are so exactly opposite
that they are two ways of looking at the same “matrix”

–  Which form is “better” is somewhat personal taste, but also
depends on how you expect to change/extend software

–  For some operations over two (multiple) arguments,
functions and pattern-matching are straightforward, but with
OOP we can do it with double dispatch (multiple dispatch)

13

The expression example
Well-known and compelling example of a common pattern:

–  Expressions for a small language
–  Different variants of expressions: ints, additions, negations, …
–  Different operations to perform: eval, toString, hasZero, …

Leads to a matrix (2D-grid) of variants and operations
–  Implementation will involve deciding what “should happen” for

each entry in the grid regardless of the PL

14

eval toString hasZero …

Int

Add

Negate

…

Standard approach in ML

•  Define a datatype, with one constructor for each variant
–  (No need to indicate datatypes if dynamically typed)

•  “Fill out the grid” via one function per column
–  Each function has one branch for each column entry
–  Can combine cases (e.g., with wildcard patterns) if multiple

entries in column are the same

[See the ML code]

15

eval toString hasZero …

Int

Add

Negate

…

Standard approach in OOP

•  Define a class, with one abstract method for each operation
–  (No need to indicate abstract methods if dynamically typed)

•  Define a subclass for each variant
•  So “fill out the grid” via one class per row with one method

implementation for each grid position
–  Can use a method in the superclass if there is a default for

multiple entries in a column

[See the Ruby and Java code]
16

eval toString hasZero …

Int

Add

Negate

…

A big course punchline

•  FP and OOP often doing the same thing in exact opposite way
–  Organize the program “by rows” or “by columns”

•  Which is “most natural” may depend on what you are doing (e.g., an
interpreter vs. a GUI) or personal taste

•  Code layout is important, but there is no perfect way since software
has many dimensions of structure
–  Tools, IDEs can help with multiple “views” (e.g., rows / columns)

17

eval toString hasZero …

Int

Add

Negate

…

Extensibility

•  For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

•  But beyond just style, this decision affects what (unexpected?)
software extensions need not change old code

•  Functions [see ML code]:
–  Easy to add a new operation, e.g., noNegConstants
–  Adding a new variant, e.g., Mult requires modifying old

functions, but ML type-checker gives a to-do list if original
code avoided wildcard patterns

18

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

•  For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

•  But beyond just style, this decision affects what (unexpected?)
software extensions are easy and/or do not change old code

•  Objects [see Ruby code]:
–  Easy to add a new variant, e.g., Mult
–  Adding a new operation, e.g., noNegConstants requires

modifying old classes, but Java type-checker gives a to-do
list if original code avoided default methods

19

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Extensibility

The other way is possible

•  Functions allow new operations and objects allow new variants
without modifying existing code even if they didn’t plan for it
–  Natural result of the decomposition

Optional:
•  Functions can support new variants somewhat awkwardly “if they

plan ahead”
–  Not explained here: Can use type constructors to make

datatypes extensible and have operations take function
arguments to give results for the extensions

•  Objects can support new operations somewhat awkwardly “if they
plan ahead”
–  Not explained here: The popular Visitor Pattern uses the

double-dispatch pattern to allow new operations “on the side”
20

Thoughts on Extensibility

•  Making software extensible is valuable and hard
–  If you know you want new operations, use FP
–  If you know you want new variants, use OOP
–  If both? Languages like Scala try; it’s a hard problem
–  Reality: The future is often hard to predict!

•  Extensibility is a double-edged sword
–  Code more reusable without being changed later
–  But makes original code more difficult to reason about locally

or change later (could break extensions)
–  Often language mechanisms to make code less extensible

(ML modules hide datatypes; Java’s final prevents
subclassing/overriding)

21

Binary operations

•  Situation is more complicated if an operation is defined over
multiple arguments that can have different variants
–  Can arise in original program or after extension

•  Function decomposition deals with this much more simply…

22

eval toString hasZero …

Int

Add

Negate

…

Example

To show the issue:
–  Include variants String and Rational
–  (Re)define Add to work on any pair of Int, String,
Rational

•  Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

23

Int String Rational

Int

String

Rational

ML Approach
Addition is different for most Int, String, Rational combinations

–  Run-time error for non-value expressions

Natural approach: pattern-match on the pair of values
–  For commutative possibilities, can re-call with (v2,v1)

24

fun add_values (v1,v2) =
 case (v1,v2) of
 (Int i, Int j) => Int (i+j)
 | (Int i, String s) => String (Int.toString i ^ s)
 | (Int i, Rational(j,k)) => Rational (i*k+j,k)
 | (Rational _, Int _) => add_values (v2,v1)
 | … (* 5 more cases (3*3 total): see the code *)

fun eval e =
 case e of
 …
 | Add(e1,e2) => add_values (eval e1, eval e2)

Example

To show the issue:
–  Include variants String and Rational
–  (Re)define Add to work on any pair of Int, String,
Rational

•  Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Worked just fine with functional decomposition -- what about OOP…

25

Int String Rational

Int

String

Rational

What about OOP?

Starts promising:
–  Use OOP to call method add_values to one value with

other value as result

26

class Add
 …
 def eval
 e1.eval.add_values e2.eval
 end
end

Classes Int, MyString, MyRational then all implement
–  Each handling 3 of the 9 cases: “add self to argument”

class Int
 …
 def add_values v
 … # what goes here?
 end
end

First try

•  This approach is common, but is “not as OOP”
–  So do not do it on your homework

•  A “hybrid” style where we used dynamic dispatch on 1 argument
and then switched to Racket-style type tests for other argument
–  Definitely not “full OOP”

27

class Int
 def add_values v
 if v.is_a? Int
 Int.new(v.i + i)
 elsif v.is_a? MyRational
 MyRational.new(v.i+v.j*i,v.j)
 else
 MyString.new(v.s + i.to_s)
 end
end

Another way…

•  add_values method in Int needs “what kind of thing” v has
–  Same problem in MyRational and MyString

•  In OOP, “always” solve this by calling a method on v instead!

•  But now we need to “tell” v “what kind of thing” self is
–  We know that!
–  “Tell” v by calling different methods on v, passing self

•  Use a “programming trick” (?) called double-dispatch…

28

Double-dispatch “trick”

•  Int, MyString, and MyRational each define all of addInt,
addString, and addRational
–  For example, String’s addInt is for adding concatenating an

integer argument to the string in self
–  9 total methods, one for each case of addition

•  Add’s eval method calls e1.eval.add_values e2.eval,
which dispatches to add_values in Int, String, or Rational
–  Int’s add_values: v.addInt self
–  MyString’s add_values: v.addString self
–  MyRational’s add_values: v.addRational self
So add_values performs “2nd dispatch” to the correct case of 9!

[Definitely see the code]

29

Why showing you this

•  Honestly, partly to belittle full commitment to OOP

•  To understand dynamic dispatch via a sophisticated idiom

•  Because required for the homework

•  To contrast with multimethods (optional)

30

Works in Java too

•  In a statically typed language, double-dispatch works fine
–  Just need all the dispatch methods in the type

[See Java code]

31

abstract class Value extends Exp {
 abstract Value add_values(Value other);
 abstract Value addInt(Int other);
 abstract Value addString(Strng other);
 abstract Value addRational(Rational other);
}
class Int extends Value { … }
class Strng extends Value { … }
class Rational extends Value { … }

Being Fair

Belittling OOP style for requiring the manual trick of double
dispatch is somewhat unfair…

What would work better:
•  Int, MyString, and MyRational each define three methods

all named add_values
–  One add_values takes an Int, one a MyString, one a
MyRational

–  So 9 total methods named add_values
–  e1.eval.add_values e2.eval picks the right one of

the 9 at run-time using the classes of the two arguments
•  Such a semantics is called multimethods or multiple dispatch

32

33

FINAL

Final Exam

Next Thursday, 8:30-10:20
•  Focus primarily on material since the midterm

–  Including topics on homeworks and not on homeworks
–  Will also have a little ML, just like the course has had

•  You will need to write code and English

34

Final: What to Expect

Practice finals will be slightly more predictive.
More forgiving partial credit.

Topics:

 functional programming / list processing
 thunks, streams, promises
 references, purity, aliasing, shallow vs. deep copy
 anonymous funcs, lexical scope, higher order funcs
 blocks and procs
 subclassing and dynamic dispatch
 static typing vs. dynamic typing, soundness, completeness
 implementing closures

Spring 2013 35 CSE341: Programming Languages

36

Victory Lap

A victory lap is an extra trip
around the track

–  By the exhausted victors (us) J

Review course goals
–  Slides from Introduction and Course-Motivation

Some big themes and perspectives

–  Stuff for five years from now more than for the final

Course evaluations: please do take some time

37

38

I really like studying programming languages.

Why?

Super stoked to explore PL with all of you.

39

We shape our tools and thereafter
our tools shape us.

I discover that I think in words. The
more words I know, the more things I
can think about...

Reading was illegal because if you
limit someone's vocab, you limit
their thoughts. They can't even think
of freedom because they don't have
the language to.

Marshall McLuhan

M. K. Asante

40

I really like studying programming languages.

Why?

Super stoked to explore PL with all of you.

PL helps us break free to think thoughts,
ask questions, and solve problems that

would otherwise be inaccessible.

Looking back on the quarter…
We had 10 short weeks to learn the fundamental concepts of PL.

Curiosity and persistence will get you everywhere.

We’ll become better programmers:

–  Even in languages we won’t use
–  Learn the core ideas around which every language is built,

despite countless surface-level differences and variations

41

THANK YOU Incredible Guides!!!

42

Armando Diaz Tolentino Riley Klingler Max Sherman

super ultra helpful, extraordinarily smart, stellar smiles

THANK YOU Our Guide in Spirit!!!

43

Dan Grossman
Creator of this flavor of 341.

(spiritual guide?)

THANK YOU. . . YOU!!1!!eleven!!one!!1!

•  And a huge thank you to all of you
–  Great attitude about a very different view of software
–  Good class attendance and questions

•  Computer science ought to be challenging and fun!

44

What this course is about

•  Many essential concepts relevant in any programming language
–  And how these pieces fit together

•  Use ML, Racket, and Ruby:
–  They let various important concepts “shine”
–  Using multiple languages shows how the same concept just

can “look different” or actually be slightly different
–  In many ways simpler than Java

•  Big focus on functional programming
–  Not using mutation (assignment statements) (!)
–  Using first-class functions (can’t explain that yet)
–  But many other topics too

45

Why learn this?

46

To free our minds from the shackles
of imperative programming.

47

48

I really like studying programming languages.

Why?

Super stoked to explore PL with all of you.

If you are in a shipwreck and all the boats are gone, a
piano top buoyant enough to keep you afloat may come
along and make a fortuitous life preserver.

This is not to say, though, that the best way to design a life
preserver is in the form of a piano top.

I think we are clinging to a great many piano tops in
accepting yesterday's fortuitous contrivings as constituting
the only means for solving a given problem.

R. Buckminster Fuller

More Detailed Course Motivation

•  Why learn fundamental concepts that appear in all languages?

•  Why use languages quite different from C, C++, Java, Python?

•  Why focus on functional programming?

•  Why use ML, Racket, and Ruby in particular?

•  Not: Language X is better than Language Y

[You won’t be tested on this stuff]

50

Summary
•  No such thing as a “best” PL

•  Fundamental concepts easier to teach in some (multiple) PLs

•  A good PL is a relevant, elegant interface for writing software
–  There is no substitute for precise understanding of PL semantics

•  Functional languages have been on the leading edge for decades
–  Ideas have been absorbed by the mainstream, but very slowly
–  First-class functions and avoiding mutation increasingly essential
–  Meanwhile, use the ideas to be a better C/Java/PHP hacker

•  Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

51

[From Course Motivation]
SML, Racket, and Ruby are a useful combination for us

 dynamically typed statically typed
 functional Racket SML
 object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins
 [and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking
[and much more]

52

Benefits of No Mutation

[An incomplete list]

1.  Can freely alias or copy values/objects: Unit 1

2.  More functions/modules are equivalent: Unit 4

3.  No need to make local copies of data: Unit 5

4.  Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

–  A fold over a collection (e.g., summing a list) is not!
53

Some other highlights

•  Function closures are really powerful and convenient…
–  … and implementing them is not magic

•  Datatypes and pattern-matching are really convenient…
–  … and exactly the opposite of OOP decomposition

•  Sound static typing prevents certain errors…
–  … and is inherently approximate

•  Subtyping and generics allow different kinds of code reuse…
–  … and combine synergistically

•  Modularity is really important; languages can help

54

From the syllabus

Successful course participants will:

•  Internalize an accurate understanding of what functional and
object-oriented programs mean

•  Develop the skills necessary to learn new programming
languages quickly

•  Master specific language concepts such that they can recognize
them in strange guises

•  Learn to evaluate the power and elegance of programming
languages and their constructs

•  Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

55

